MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Structured version   Visualization version   Unicode version

Theorem fcfnei 21839
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Distinct variable groups:    A, n    n, s, J    n, L, s    n, F, s    n, X, s    n, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem fcfnei
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 isfcf 21838 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
2 simpll1 1100 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  (TopOn `  X
) )
3 topontop 20718 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
42, 3syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  Top )
5 simpr 477 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  e.  ( ( nei `  J ) `  { A } ) )
6 eqid 2622 . . . . . . . . 9  |-  U. J  =  U. J
76neii1 20910 . . . . . . . 8  |-  ( ( J  e.  Top  /\  n  e.  ( ( nei `  J ) `  { A } ) )  ->  n  C_  U. J
)
84, 5, 7syl2anc 693 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  C_  U. J )
96ntrss2 20861 . . . . . . 7  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  C_  n )
104, 8, 9syl2anc 693 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  C_  n )
11 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  X )
12 toponuni 20719 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
132, 12syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  X  =  U. J )
1411, 13eleqtrd 2703 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  U. J )
1514snssd 4340 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
166neiint 20908 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  n  C_  U. J
)  ->  ( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
174, 15, 8, 16syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
185, 17mpbid 222 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  (
( int `  J
) `  n )
)
19 snssg 4327 . . . . . . . . 9  |-  ( A  e.  X  ->  ( A  e.  ( ( int `  J ) `  n )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
2011, 19syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A  e.  ( ( int `  J
) `  n )  <->  { A }  C_  (
( int `  J
) `  n )
) )
2118, 20mpbird 247 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  ( ( int `  J ) `  n ) )
226ntropn 20853 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  e.  J )
234, 8, 22syl2anc 693 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  e.  J )
24 eleq2 2690 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A  e.  o  <->  A  e.  (
( int `  J
) `  n )
) )
25 ineq1 3807 . . . . . . . . . . . 12  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( o  i^i  ( F " s
) )  =  ( ( ( int `  J
) `  n )  i^i  ( F " s
) ) )
2625neeq1d 2853 . . . . . . . . . . 11  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( (
o  i^i  ( F " s ) )  =/=  (/) 
<->  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2726ralbidv 2986 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) 
<-> 
A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2824, 27imbi12d 334 . . . . . . . . 9  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  <->  ( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
2928rspcv 3305 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  e.  J  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  ->  ( A  e.  ( ( int `  J ) `  n )  ->  A. s  e.  L  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/) ) ) )
3023, 29syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  -> 
( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
3121, 30mpid 44 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
32 ssrin 3838 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) ) )
33 ssn0 3976 . . . . . . . . 9  |-  ( ( ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  C_  ( n  i^i  ( F " s ) )  /\  ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/) )  -> 
( n  i^i  ( F " s ) )  =/=  (/) )
3433ex 450 . . . . . . . 8  |-  ( ( ( ( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) )  -> 
( ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3532, 34syl 17 . . . . . . 7  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3635ralimdv 2963 . . . . . 6  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( A. s  e.  L  (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
3710, 31, 36sylsyld 61 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/) ) )
3837ralrimdva 2969 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
39 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
4039, 3syl 17 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  Top )
41 opnneip 20923 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J  /\  A  e.  o )  ->  o  e.  ( ( nei `  J ) `
 { A }
) )
42413expb 1266 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  A  e.  o
) )  ->  o  e.  ( ( nei `  J
) `  { A } ) )
4340, 42sylan 488 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
o  e.  ( ( nei `  J ) `
 { A }
) )
44 ineq1 3807 . . . . . . . . . . 11  |-  ( n  =  o  ->  (
n  i^i  ( F " s ) )  =  ( o  i^i  ( F " s ) ) )
4544neeq1d 2853 . . . . . . . . . 10  |-  ( n  =  o  ->  (
( n  i^i  ( F " s ) )  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4645ralbidv 2986 . . . . . . . . 9  |-  ( n  =  o  ->  ( A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4746rspcv 3305 . . . . . . . 8  |-  ( o  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4843, 47syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4948expr 643 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A  e.  o  ->  ( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5049com23 86 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) ) ) )
5150ralrimdva 2969 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5238, 51impbid 202 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  <->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
5352pm5.32da 673 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
541, 53bitrd 268 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   intcnt 20821   neicnei 20901   Filcfil 21649    fClusf cfcf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-fm 21742  df-fcls 21745  df-fcf 21746
This theorem is referenced by:  fcfneii  21841
  Copyright terms: Public domain W3C validator