MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem16 Structured version   Visualization version   GIF version

Theorem fin23lem16 9157
Description: Lemma for fin23 9211. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem16 ran 𝑈 = ran 𝑡
Distinct variable groups:   𝑡,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hint:   𝑈(𝑡)

Proof of Theorem fin23lem16
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4469 . . 3 ( ran 𝑈 ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ran 𝑡)
2 fin23lem.a . . . . . 6 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
32fnseqom 7550 . . . . 5 𝑈 Fn ω
4 fvelrnb 6243 . . . . 5 (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈𝑏) = 𝑎))
53, 4ax-mp 5 . . . 4 (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈𝑏) = 𝑎)
6 peano1 7085 . . . . . . . 8 ∅ ∈ ω
7 0ss 3972 . . . . . . . . 9 ∅ ⊆ 𝑏
82fin23lem15 9156 . . . . . . . . 9 (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈𝑏) ⊆ (𝑈‘∅))
97, 8mpan2 707 . . . . . . . 8 ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈𝑏) ⊆ (𝑈‘∅))
106, 9mpan2 707 . . . . . . 7 (𝑏 ∈ ω → (𝑈𝑏) ⊆ (𝑈‘∅))
11 vex 3203 . . . . . . . . . 10 𝑡 ∈ V
1211rnex 7100 . . . . . . . . 9 ran 𝑡 ∈ V
1312uniex 6953 . . . . . . . 8 ran 𝑡 ∈ V
142seqom0g 7551 . . . . . . . 8 ( ran 𝑡 ∈ V → (𝑈‘∅) = ran 𝑡)
1513, 14ax-mp 5 . . . . . . 7 (𝑈‘∅) = ran 𝑡
1610, 15syl6sseq 3651 . . . . . 6 (𝑏 ∈ ω → (𝑈𝑏) ⊆ ran 𝑡)
17 sseq1 3626 . . . . . 6 ((𝑈𝑏) = 𝑎 → ((𝑈𝑏) ⊆ ran 𝑡𝑎 ran 𝑡))
1816, 17syl5ibcom 235 . . . . 5 (𝑏 ∈ ω → ((𝑈𝑏) = 𝑎𝑎 ran 𝑡))
1918rexlimiv 3027 . . . 4 (∃𝑏 ∈ ω (𝑈𝑏) = 𝑎𝑎 ran 𝑡)
205, 19sylbi 207 . . 3 (𝑎 ∈ ran 𝑈𝑎 ran 𝑡)
211, 20mprgbir 2927 . 2 ran 𝑈 ran 𝑡
22 fnfvelrn 6356 . . . . 5 ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈)
233, 6, 22mp2an 708 . . . 4 (𝑈‘∅) ∈ ran 𝑈
2415, 23eqeltrri 2698 . . 3 ran 𝑡 ∈ ran 𝑈
25 elssuni 4467 . . 3 ( ran 𝑡 ∈ ran 𝑈 ran 𝑡 ran 𝑈)
2624, 25ax-mp 5 . 2 ran 𝑡 ran 𝑈
2721, 26eqssi 3619 1 ran 𝑈 = ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cin 3573  wss 3574  c0 3915  ifcif 4086   cuni 4436  ran crn 5115   Fn wfn 5883  cfv 5888  cmpt2 6652  ωcom 7065  seq𝜔cseqom 7542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543
This theorem is referenced by:  fin23lem17  9160  fin23lem31  9165
  Copyright terms: Public domain W3C validator