![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem16 | Structured version Visualization version GIF version |
Description: Lemma for fin23 9211. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 4469 | . . 3 ⊢ (∪ ran 𝑈 ⊆ ∪ ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ⊆ ∪ ran 𝑡) | |
2 | fin23lem.a | . . . . . 6 ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
3 | 2 | fnseqom 7550 | . . . . 5 ⊢ 𝑈 Fn ω |
4 | fvelrnb 6243 | . . . . 5 ⊢ (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎) |
6 | peano1 7085 | . . . . . . . 8 ⊢ ∅ ∈ ω | |
7 | 0ss 3972 | . . . . . . . . 9 ⊢ ∅ ⊆ 𝑏 | |
8 | 2 | fin23lem15 9156 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
9 | 7, 8 | mpan2 707 | . . . . . . . 8 ⊢ ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
10 | 6, 9 | mpan2 707 | . . . . . . 7 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
11 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑡 ∈ V | |
12 | 11 | rnex 7100 | . . . . . . . . 9 ⊢ ran 𝑡 ∈ V |
13 | 12 | uniex 6953 | . . . . . . . 8 ⊢ ∪ ran 𝑡 ∈ V |
14 | 2 | seqom0g 7551 | . . . . . . . 8 ⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑈‘∅) = ∪ ran 𝑡 |
16 | 10, 15 | syl6sseq 3651 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ ∪ ran 𝑡) |
17 | sseq1 3626 | . . . . . 6 ⊢ ((𝑈‘𝑏) = 𝑎 → ((𝑈‘𝑏) ⊆ ∪ ran 𝑡 ↔ 𝑎 ⊆ ∪ ran 𝑡)) | |
18 | 16, 17 | syl5ibcom 235 | . . . . 5 ⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡)) |
19 | 18 | rexlimiv 3027 | . . . 4 ⊢ (∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡) |
20 | 5, 19 | sylbi 207 | . . 3 ⊢ (𝑎 ∈ ran 𝑈 → 𝑎 ⊆ ∪ ran 𝑡) |
21 | 1, 20 | mprgbir 2927 | . 2 ⊢ ∪ ran 𝑈 ⊆ ∪ ran 𝑡 |
22 | fnfvelrn 6356 | . . . . 5 ⊢ ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈) | |
23 | 3, 6, 22 | mp2an 708 | . . . 4 ⊢ (𝑈‘∅) ∈ ran 𝑈 |
24 | 15, 23 | eqeltrri 2698 | . . 3 ⊢ ∪ ran 𝑡 ∈ ran 𝑈 |
25 | elssuni 4467 | . . 3 ⊢ (∪ ran 𝑡 ∈ ran 𝑈 → ∪ ran 𝑡 ⊆ ∪ ran 𝑈) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ∪ ran 𝑡 ⊆ ∪ ran 𝑈 |
27 | 21, 26 | eqssi 3619 | 1 ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ifcif 4086 ∪ cuni 4436 ran crn 5115 Fn wfn 5883 ‘cfv 5888 ↦ cmpt2 6652 ωcom 7065 seq𝜔cseqom 7542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 |
This theorem is referenced by: fin23lem17 9160 fin23lem31 9165 |
Copyright terms: Public domain | W3C validator |