Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   GIF version

Theorem finxpreclem3 33230
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 df-ov 6653 . 2 (𝑁𝐹𝑋) = (𝐹‘⟨𝑁, 𝑋⟩)
2 finxpreclem3.1 . . . 4 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
32a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
4 eqeq1 2626 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 = 1𝑜𝑁 = 1𝑜))
5 eleq1 2689 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
64, 5bi2anan9 917 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → ((𝑛 = 1𝑜𝑥𝑈) ↔ (𝑁 = 1𝑜𝑋𝑈)))
7 eleq1 2689 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
87adantl 482 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
9 unieq 4444 . . . . . . . . 9 (𝑛 = 𝑁 𝑛 = 𝑁)
109adantr 481 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
11 fveq2 6191 . . . . . . . . 9 (𝑥 = 𝑋 → (1st𝑥) = (1st𝑋))
1211adantl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → (1st𝑥) = (1st𝑋))
1310, 12opeq12d 4410 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨ 𝑛, (1st𝑥)⟩ = ⟨ 𝑁, (1st𝑋)⟩)
14 opeq12 4404 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨𝑛, 𝑥⟩ = ⟨𝑁, 𝑋⟩)
158, 13, 14ifbieq12d 4113 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
166, 15ifbieq2d 4111 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑁 = 1𝑜𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)))
17 sssucid 5802 . . . . . . . . . . . . 13 1𝑜 ⊆ suc 1𝑜
18 df-2o 7561 . . . . . . . . . . . . 13 2𝑜 = suc 1𝑜
1917, 18sseqtr4i 3638 . . . . . . . . . . . 12 1𝑜 ⊆ 2𝑜
20 1on 7567 . . . . . . . . . . . . . 14 1𝑜 ∈ On
2118, 20sucneqoni 33214 . . . . . . . . . . . . 13 2𝑜 ≠ 1𝑜
2221necomi 2848 . . . . . . . . . . . 12 1𝑜 ≠ 2𝑜
23 df-pss 3590 . . . . . . . . . . . 12 (1𝑜 ⊊ 2𝑜 ↔ (1𝑜 ⊆ 2𝑜 ∧ 1𝑜 ≠ 2𝑜))
2419, 22, 23mpbir2an 955 . . . . . . . . . . 11 1𝑜 ⊊ 2𝑜
25 ssnpss 3710 . . . . . . . . . . 11 (2𝑜 ⊆ 1𝑜 → ¬ 1𝑜 ⊊ 2𝑜)
2624, 25mt2 191 . . . . . . . . . 10 ¬ 2𝑜 ⊆ 1𝑜
27 sseq2 3627 . . . . . . . . . 10 (𝑁 = 1𝑜 → (2𝑜𝑁 ↔ 2𝑜 ⊆ 1𝑜))
2826, 27mtbiri 317 . . . . . . . . 9 (𝑁 = 1𝑜 → ¬ 2𝑜𝑁)
2928con2i 134 . . . . . . . 8 (2𝑜𝑁 → ¬ 𝑁 = 1𝑜)
3029intnanrd 963 . . . . . . 7 (2𝑜𝑁 → ¬ (𝑁 = 1𝑜𝑋𝑈))
3130iffalsed 4097 . . . . . 6 (2𝑜𝑁 → if((𝑁 = 1𝑜𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
32 iftrue 4092 . . . . . 6 (𝑋 ∈ (V × 𝑈) → if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩) = ⟨ 𝑁, (1st𝑋)⟩)
3331, 32sylan9eq 2676 . . . . 5 ((2𝑜𝑁𝑋 ∈ (V × 𝑈)) → if((𝑁 = 1𝑜𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3416, 33sylan9eqr 2678 . . . 4 (((2𝑜𝑁𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3534adantlll 754 . . 3 ((((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
36 simpll 790 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑁 ∈ ω)
37 elex 3212 . . . 4 (𝑋 ∈ (V × 𝑈) → 𝑋 ∈ V)
3837adantl 482 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑋 ∈ V)
39 opex 4932 . . . 4 𝑁, (1st𝑋)⟩ ∈ V
4039a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ ∈ V)
413, 35, 36, 38, 40ovmpt2d 6788 . 2 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → (𝑁𝐹𝑋) = ⟨ 𝑁, (1st𝑋)⟩)
421, 41syl5reqr 2671 1 (((𝑁 ∈ ω ∧ 2𝑜𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  wss 3574  wpss 3575  c0 3915  ifcif 4086  cop 4183   cuni 4436   × cxp 5112  suc csuc 5725  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  1st c1st 7166  1𝑜c1o 7553  2𝑜c2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561
This theorem is referenced by:  finxpreclem4  33231
  Copyright terms: Public domain W3C validator