Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   Unicode version

Theorem finxpreclem3 33230
Description: Lemma for  ^^ ^^ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
Assertion
Ref Expression
finxpreclem3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  <. U. N ,  ( 1st `  X )
>.  =  ( F `  <. N ,  X >. ) )
Distinct variable groups:    n, N, x    U, n, x    n, X, x
Allowed substitution hints:    F( x, n)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( N F X )  =  ( F `  <. N ,  X >. )
2 finxpreclem3.1 . . . 4  |-  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) ) )
32a1i 11 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  F  =  ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) )
4 eqeq1 2626 . . . . . . 7  |-  ( n  =  N  ->  (
n  =  1o  <->  N  =  1o ) )
5 eleq1 2689 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  U  <->  X  e.  U ) )
64, 5bi2anan9 917 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  ( ( n  =  1o  /\  x  e.  U )  <->  ( N  =  1o  /\  X  e.  U ) ) )
7 eleq1 2689 . . . . . . . 8  |-  ( x  =  X  ->  (
x  e.  ( _V 
X.  U )  <->  X  e.  ( _V  X.  U
) ) )
87adantl 482 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  ( x  e.  ( _V  X.  U )  <-> 
X  e.  ( _V 
X.  U ) ) )
9 unieq 4444 . . . . . . . . 9  |-  ( n  =  N  ->  U. n  =  U. N )
109adantr 481 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  U. n  =  U. N )
11 fveq2 6191 . . . . . . . . 9  |-  ( x  =  X  ->  ( 1st `  x )  =  ( 1st `  X
) )
1211adantl 482 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 1st `  x
)  =  ( 1st `  X ) )
1310, 12opeq12d 4410 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  -> 
<. U. n ,  ( 1st `  x )
>.  =  <. U. N ,  ( 1st `  X
) >. )
14 opeq12 4404 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  -> 
<. n ,  x >.  = 
<. N ,  X >. )
158, 13, 14ifbieq12d 4113 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. )  =  if ( X  e.  ( _V  X.  U ) ,  <. U. N ,  ( 1st `  X )
>. ,  <. N ,  X >. ) )
166, 15ifbieq2d 4111 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  =  if ( ( N  =  1o  /\  X  e.  U ) ,  (/) ,  if ( X  e.  ( _V  X.  U
) ,  <. U. N ,  ( 1st `  X
) >. ,  <. N ,  X >. ) ) )
17 sssucid 5802 . . . . . . . . . . . . 13  |-  1o  C_  suc  1o
18 df-2o 7561 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
1917, 18sseqtr4i 3638 . . . . . . . . . . . 12  |-  1o  C_  2o
20 1on 7567 . . . . . . . . . . . . . 14  |-  1o  e.  On
2118, 20sucneqoni 33214 . . . . . . . . . . . . 13  |-  2o  =/=  1o
2221necomi 2848 . . . . . . . . . . . 12  |-  1o  =/=  2o
23 df-pss 3590 . . . . . . . . . . . 12  |-  ( 1o  C.  2o  <->  ( 1o  C_  2o  /\  1o  =/=  2o ) )
2419, 22, 23mpbir2an 955 . . . . . . . . . . 11  |-  1o  C.  2o
25 ssnpss 3710 . . . . . . . . . . 11  |-  ( 2o  C_  1o  ->  -.  1o  C.  2o )
2624, 25mt2 191 . . . . . . . . . 10  |-  -.  2o  C_  1o
27 sseq2 3627 . . . . . . . . . 10  |-  ( N  =  1o  ->  ( 2o  C_  N  <->  2o  C_  1o ) )
2826, 27mtbiri 317 . . . . . . . . 9  |-  ( N  =  1o  ->  -.  2o  C_  N )
2928con2i 134 . . . . . . . 8  |-  ( 2o  C_  N  ->  -.  N  =  1o )
3029intnanrd 963 . . . . . . 7  |-  ( 2o  C_  N  ->  -.  ( N  =  1o  /\  X  e.  U ) )
3130iffalsed 4097 . . . . . 6  |-  ( 2o  C_  N  ->  if ( ( N  =  1o 
/\  X  e.  U
) ,  (/) ,  if ( X  e.  ( _V  X.  U ) , 
<. U. N ,  ( 1st `  X )
>. ,  <. N ,  X >. ) )  =  if ( X  e.  ( _V  X.  U
) ,  <. U. N ,  ( 1st `  X
) >. ,  <. N ,  X >. ) )
32 iftrue 4092 . . . . . 6  |-  ( X  e.  ( _V  X.  U )  ->  if ( X  e.  ( _V  X.  U ) , 
<. U. N ,  ( 1st `  X )
>. ,  <. N ,  X >. )  =  <. U. N ,  ( 1st `  X ) >. )
3331, 32sylan9eq 2676 . . . . 5  |-  ( ( 2o  C_  N  /\  X  e.  ( _V  X.  U ) )  ->  if ( ( N  =  1o  /\  X  e.  U ) ,  (/) ,  if ( X  e.  ( _V  X.  U
) ,  <. U. N ,  ( 1st `  X
) >. ,  <. N ,  X >. ) )  = 
<. U. N ,  ( 1st `  X )
>. )
3416, 33sylan9eqr 2678 . . . 4  |-  ( ( ( 2o  C_  N  /\  X  e.  ( _V  X.  U ) )  /\  ( n  =  N  /\  x  =  X ) )  ->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V  X.  U
) ,  <. U. n ,  ( 1st `  x
) >. ,  <. n ,  x >. ) )  = 
<. U. N ,  ( 1st `  X )
>. )
3534adantlll 754 . . 3  |-  ( ( ( ( N  e. 
om  /\  2o  C_  N
)  /\  X  e.  ( _V  X.  U
) )  /\  (
n  =  N  /\  x  =  X )
)  ->  if (
( n  =  1o 
/\  x  e.  U
) ,  (/) ,  if ( x  e.  ( _V  X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) )  = 
<. U. N ,  ( 1st `  X )
>. )
36 simpll 790 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  N  e.  om )
37 elex 3212 . . . 4  |-  ( X  e.  ( _V  X.  U )  ->  X  e.  _V )
3837adantl 482 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  X  e.  _V )
39 opex 4932 . . . 4  |-  <. U. N ,  ( 1st `  X
) >.  e.  _V
4039a1i 11 . . 3  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  <. U. N ,  ( 1st `  X )
>.  e.  _V )
413, 35, 36, 38, 40ovmpt2d 6788 . 2  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  ( N F X )  =  <. U. N ,  ( 1st `  X ) >. )
421, 41syl5reqr 2671 1  |-  ( ( ( N  e.  om  /\  2o  C_  N )  /\  X  e.  ( _V  X.  U ) )  ->  <. U. N ,  ( 1st `  X )
>.  =  ( F `  <. N ,  X >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574    C. wpss 3575   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436    X. cxp 5112   suc csuc 5725   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1stc1st 7166   1oc1o 7553   2oc2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561
This theorem is referenced by:  finxpreclem4  33231
  Copyright terms: Public domain W3C validator