![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsuppeq0 | Structured version Visualization version GIF version |
Description: The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fnsuppeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3973 | . . 3 ⊢ ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 supp 𝑍) = ∅) | |
2 | un0 3967 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
3 | uncom 3757 | . . . . . . . 8 ⊢ (𝐴 ∪ ∅) = (∅ ∪ 𝐴) | |
4 | 2, 3 | eqtr3i 2646 | . . . . . . 7 ⊢ 𝐴 = (∅ ∪ 𝐴) |
5 | 4 | fneq2i 5986 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn (∅ ∪ 𝐴)) |
6 | 5 | biimpi 206 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹 Fn (∅ ∪ 𝐴)) |
7 | 6 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 Fn (∅ ∪ 𝐴)) |
8 | fnex 6481 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊) → 𝐹 ∈ V) | |
9 | 8 | 3adant3 1081 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝐹 ∈ V) |
10 | simp3 1063 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) | |
11 | 0in 3969 | . . . . 5 ⊢ (∅ ∩ 𝐴) = ∅ | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (∅ ∩ 𝐴) = ∅) |
13 | fnsuppres 7322 | . . . 4 ⊢ ((𝐹 Fn (∅ ∪ 𝐴) ∧ (𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) ∧ (∅ ∩ 𝐴) = ∅) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) | |
14 | 7, 9, 10, 12, 13 | syl121anc 1331 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) ⊆ ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
15 | 1, 14 | syl5bbr 274 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 ↾ 𝐴) = (𝐴 × {𝑍}))) |
16 | fnresdm 6000 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
17 | 16 | 3ad2ant1 1082 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 ↾ 𝐴) = 𝐹) |
18 | 17 | eqeq1d 2624 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 ↾ 𝐴) = (𝐴 × {𝑍}) ↔ 𝐹 = (𝐴 × {𝑍}))) |
19 | 15, 18 | bitrd 268 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 × cxp 5112 ↾ cres 5116 Fn wfn 5883 (class class class)co 6650 supp csupp 7295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-supp 7296 |
This theorem is referenced by: fczsupp0 7324 cantnf0 8572 mdegldg 23826 mdeg0 23830 |
Copyright terms: Public domain | W3C validator |