MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofinf1o Structured version   Visualization version   GIF version

Theorem fofinf1o 8241
Description: Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.)
Assertion
Ref Expression
fofinf1o ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)

Proof of Theorem fofinf1o
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴onto𝐵)
2 fof 6115 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
31, 2syl 17 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴𝐵)
4 domnsym 8086 . . . . . . 7 (𝐵 ≼ (𝐴 ∖ {𝑦}) → ¬ (𝐴 ∖ {𝑦}) ≺ 𝐵)
5 simp3 1063 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐵 ∈ Fin)
6 simp2 1062 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
7 enfii 8177 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
85, 6, 7syl2anc 693 . . . . . . . . . 10 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
98ad2antrr 762 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ∈ Fin)
10 difssd 3738 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊆ 𝐴)
11 simplrr 801 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦𝐴)
12 neldifsn 4321 . . . . . . . . . . . 12 ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})
13 nelne1 2890 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐴 ∖ {𝑦})) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1411, 12, 13sylancl 694 . . . . . . . . . . 11 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴 ≠ (𝐴 ∖ {𝑦}))
1514necomd 2849 . . . . . . . . . 10 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≠ 𝐴)
16 df-pss 3590 . . . . . . . . . 10 ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ↔ ((𝐴 ∖ {𝑦}) ⊆ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≠ 𝐴))
1710, 15, 16sylanbrc 698 . . . . . . . . 9 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
18 php3 8146 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊊ 𝐴) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
199, 17, 18syl2anc 693 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐴)
206ad2antrr 762 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝐴𝐵)
21 sdomentr 8094 . . . . . . . 8 (((𝐴 ∖ {𝑦}) ≺ 𝐴𝐴𝐵) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
2219, 20, 21syl2anc 693 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝐴 ∖ {𝑦}) ≺ 𝐵)
234, 22nsyl3 133 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝐵 ≼ (𝐴 ∖ {𝑦}))
248adantr 481 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐴 ∈ Fin)
25 difss 3737 . . . . . . . . . . 11 (𝐴 ∖ {𝑦}) ⊆ 𝐴
26 ssfi 8180 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐴 ∖ {𝑦}) ∈ Fin)
2724, 25, 26sylancl 694 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐴 ∖ {𝑦}) ∈ Fin)
283adantr 481 . . . . . . . . . . . 12 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴𝐵)
29 fssres 6070 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵 ∧ (𝐴 ∖ {𝑦}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
3028, 25, 29sylancl 694 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵)
311adantr 481 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐹:𝐴onto𝐵)
32 foelrn 6378 . . . . . . . . . . . . . 14 ((𝐹:𝐴onto𝐵𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
3331, 32sylan 488 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑢𝐴 𝑧 = (𝐹𝑢))
34 simprll 802 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝐴)
35 simprrr 805 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥𝑦)
36 eldifsn 4317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑥𝐴𝑥𝑦))
3734, 35, 36sylanbrc 698 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝑥 ∈ (𝐴 ∖ {𝑦}))
38 simprrl 804 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑥) = (𝐹𝑦))
3938eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹𝑦) = (𝐹𝑥))
40 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
4140eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑥 → ((𝐹𝑦) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
4241rspcev 3309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑦) = (𝐹𝑥)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
4337, 39, 42syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤))
44 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
4544eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑦 → ((𝐹𝑢) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑤)))
4645rexbidv 3052 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑦 → (∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑦) = (𝐹𝑤)))
4743, 46syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4847adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑢 = 𝑦 → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
4948imp 445 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢 = 𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
50 eldifsn 4317 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) ↔ (𝑢𝐴𝑢𝑦))
51 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑢) = (𝐹𝑢)
52 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (𝐹𝑤) = (𝐹𝑢))
5352eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → ((𝐹𝑢) = (𝐹𝑤) ↔ (𝐹𝑢) = (𝐹𝑢)))
5453rspcev 3309 . . . . . . . . . . . . . . . . . . . 20 ((𝑢 ∈ (𝐴 ∖ {𝑦}) ∧ (𝐹𝑢) = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5551, 54mpan2 707 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴 ∖ {𝑦}) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5650, 55sylbir 225 . . . . . . . . . . . . . . . . . 18 ((𝑢𝐴𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5756adantll 750 . . . . . . . . . . . . . . . . 17 (((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) ∧ 𝑢𝑦) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
5849, 57pm2.61dane 2881 . . . . . . . . . . . . . . . 16 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤))
59 fvres 6207 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴 ∖ {𝑦}) → ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) = (𝐹𝑤))
6059eqeq2d 2632 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝐴 ∖ {𝑦}) → (𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ 𝑧 = (𝐹𝑤)))
6160rexbiia 3040 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤))
62 eqeq1 2626 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑢) → (𝑧 = (𝐹𝑤) ↔ (𝐹𝑢) = (𝐹𝑤)))
6362rexbidv 3052 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = (𝐹𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6461, 63syl5bb 272 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → (∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤) ↔ ∃𝑤 ∈ (𝐴 ∖ {𝑦})(𝐹𝑢) = (𝐹𝑤)))
6558, 64syl5ibrcom 237 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑢𝐴) → (𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6665rexlimdva 3031 . . . . . . . . . . . . . 14 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (∃𝑢𝐴 𝑧 = (𝐹𝑢) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
6766imp 445 . . . . . . . . . . . . 13 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ ∃𝑢𝐴 𝑧 = (𝐹𝑢)) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6833, 67syldan 487 . . . . . . . . . . . 12 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) ∧ 𝑧𝐵) → ∃𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
6968ralrimiva 2966 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤))
70 dffo3 6374 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵 ↔ ((𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})⟶𝐵 ∧ ∀𝑧𝐵𝑤 ∈ (𝐴 ∖ {𝑦})𝑧 = ((𝐹 ↾ (𝐴 ∖ {𝑦}))‘𝑤)))
7130, 69, 70sylanbrc 698 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵)
72 fodomfi 8239 . . . . . . . . . 10 (((𝐴 ∖ {𝑦}) ∈ Fin ∧ (𝐹 ↾ (𝐴 ∖ {𝑦})):(𝐴 ∖ {𝑦})–onto𝐵) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7327, 71, 72syl2anc 693 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7473anassrs 680 . . . . . . . 8 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝐵 ≼ (𝐴 ∖ {𝑦}))
7574expr 643 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥𝑦𝐵 ≼ (𝐴 ∖ {𝑦})))
7675necon1bd 2812 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (¬ 𝐵 ≼ (𝐴 ∖ {𝑦}) → 𝑥 = 𝑦))
7723, 76mpd 15 . . . . 5 ((((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
7877ex 450 . . . 4 (((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
7978ralrimivva 2971 . . 3 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
80 dff13 6512 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
813, 79, 80sylanbrc 698 . 2 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1𝐵)
82 df-f1o 5895 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
8381, 1, 82sylanbrc 698 1 ((𝐹:𝐴onto𝐵𝐴𝐵𝐵 ∈ Fin) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  wpss 3575  {csn 4177   class class class wbr 4653  cres 5116  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  cen 7952  cdom 7953  csdm 7954  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  rneqdmfinf1o  8242  phpreu  33393
  Copyright terms: Public domain W3C validator