MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmpt Structured version   Visualization version   GIF version

Theorem frsucmpt 7533
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmpt ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)

Proof of Theorem frsucmpt
StepHypRef Expression
1 frsuc 7532 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
2 frsucmpt.4 . . . 4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
32fveq1i 6192 . . 3 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
42fveq1i 6192 . . . 4 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
54fveq2i 6194 . . 3 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
61, 3, 53eqtr4g 2681 . 2 (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
7 fvex 6201 . . 3 (𝐹𝐵) ∈ V
8 nfmpt1 4747 . . . . . . . 8 𝑥(𝑥 ∈ V ↦ 𝐶)
9 frsucmpt.1 . . . . . . . 8 𝑥𝐴
108, 9nfrdg 7510 . . . . . . 7 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
11 nfcv 2764 . . . . . . 7 𝑥ω
1210, 11nfres 5398 . . . . . 6 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
132, 12nfcxfr 2762 . . . . 5 𝑥𝐹
14 frsucmpt.2 . . . . 5 𝑥𝐵
1513, 14nffv 6198 . . . 4 𝑥(𝐹𝐵)
16 frsucmpt.3 . . . 4 𝑥𝐷
17 frsucmpt.5 . . . 4 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
18 eqid 2622 . . . 4 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1915, 16, 17, 18fvmptf 6301 . . 3 (((𝐹𝐵) ∈ V ∧ 𝐷𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
207, 19mpan 706 . 2 (𝐷𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
216, 20sylan9eq 2676 1 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wnfc 2751  Vcvv 3200  cmpt 4729  cres 5116  suc csuc 5725  cfv 5888  ωcom 7065  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  frsucmpt2  7535  dffi3  8337  axdclem  9341  trpredlem1  31727  trpredtr  31730  trpredmintr  31731  trpred0  31736  trpredrec  31738
  Copyright terms: Public domain W3C validator