Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredtr Structured version   Visualization version   GIF version

Theorem trpredtr 31730
Description: The transitive predecessors are transitive in 𝑅 and 𝐴 (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredtr ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))

Proof of Theorem trpredtr
Dummy variables 𝑎 𝑓 𝑖 𝑗 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 31726 . 2 (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
2 simplr 792 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑖 ∈ ω)
3 peano2 7086 . . . . . 6 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
42, 3syl 17 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → suc 𝑖 ∈ ω)
5 simpr 477 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖))
6 ssid 3624 . . . . . . 7 Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)
7 predeq3 5684 . . . . . . . . . 10 (𝑡 = 𝑌 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑌))
87sseq2d 3633 . . . . . . . . 9 (𝑡 = 𝑌 → (Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)))
98rspcev 3309 . . . . . . . 8 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → ∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡))
10 ssiun 4562 . . . . . . . 8 (∃𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑡) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
119, 10syl 17 . . . . . . 7 ((𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑌)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
125, 6, 11sylancl 694 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
13 fvex 6201 . . . . . . . 8 ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V
14 setlikespec 5701 . . . . . . . . . . . . 13 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
15 trpredlem1 31727 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝑋𝐴𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴)
1716sseld 3602 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝐴))
18 setlikespec 5701 . . . . . . . . . . . . 13 ((𝑡𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑡) ∈ V)
1918expcom 451 . . . . . . . . . . . 12 (𝑅 Se 𝐴 → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2019adantl 482 . . . . . . . . . . 11 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡𝐴 → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2117, 20syld 47 . . . . . . . . . 10 ((𝑋𝐴𝑅 Se 𝐴) → (𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑡) ∈ V))
2221ralrimiv 2965 . . . . . . . . 9 ((𝑋𝐴𝑅 Se 𝐴) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2322ad2antrr 762 . . . . . . . 8 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
24 iunexg 7143 . . . . . . . 8 ((((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ∈ V ∧ ∀𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
2513, 23, 24sylancr 695 . . . . . . 7 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V)
26 nfcv 2764 . . . . . . . 8 𝑓Pred(𝑅, 𝐴, 𝑋)
27 nfcv 2764 . . . . . . . 8 𝑓𝑖
28 nfcv 2764 . . . . . . . 8 𝑓 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡)
29 predeq3 5684 . . . . . . . . . . . 12 (𝑦 = 𝑡 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑡))
3029cbviunv 4559 . . . . . . . . . . 11 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡)
31 iuneq1 4534 . . . . . . . . . . 11 (𝑎 = 𝑓 𝑡𝑎 Pred(𝑅, 𝐴, 𝑡) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3230, 31syl5eq 2668 . . . . . . . . . 10 (𝑎 = 𝑓 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦) = 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
3332cbvmptv 4750 . . . . . . . . 9 (𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡))
34 rdgeq1 7507 . . . . . . . . 9 ((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)) → rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)))
35 reseq1 5390 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω))
3633, 34, 35mp2b 10 . . . . . . . 8 (rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑓 ∈ V ↦ 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)
37 iuneq1 4534 . . . . . . . 8 (𝑓 = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → 𝑡𝑓 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
3826, 27, 28, 36, 37frsucmpt 7533 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡) ∈ V) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
392, 25, 38syl2anc 693 . . . . . 6 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖) = 𝑡 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)Pred(𝑅, 𝐴, 𝑡))
4012, 39sseqtr4d 3642 . . . . 5 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
41 fveq2 6191 . . . . . . . . 9 (𝑗 = suc 𝑖 → ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖))
4241sseq2d 3633 . . . . . . . 8 (𝑗 = suc 𝑖 → (Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ↔ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)))
4342rspcev 3309 . . . . . . 7 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → ∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
44 ssiun 4562 . . . . . . 7 (∃𝑗 ∈ ω Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
4543, 44syl 17 . . . . . 6 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗))
46 dftrpred2 31719 . . . . . 6 TrPred(𝑅, 𝐴, 𝑋) = 𝑗 ∈ ω ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗)
4745, 46syl6sseqr 3652 . . . . 5 ((suc 𝑖 ∈ ω ∧ Pred(𝑅, 𝐴, 𝑌) ⊆ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
484, 40, 47syl2anc 693 . . . 4 ((((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) ∧ 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))
4948ex 450 . . 3 (((𝑋𝐴𝑅 Se 𝐴) ∧ 𝑖 ∈ ω) → (𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
5049rexlimdva 3031 . 2 ((𝑋𝐴𝑅 Se 𝐴) → (∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ 𝑦𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
511, 50syl5bi 232 1 ((𝑋𝐴𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   ciun 4520  cmpt 4729   Se wse 5071  cres 5116  Predcpred 5679  suc csuc 5725  cfv 5888  ωcom 7065  reccrdg 7505  TrPredctrpred 31717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  trpredelss  31732  frmin  31739
  Copyright terms: Public domain W3C validator