| Step | Hyp | Ref
| Expression |
| 1 | | dftrpred2 31719 |
. 2
⊢
TrPred(𝑅, 𝐴, 𝑋) = ∪
𝑖 ∈ ω
((rec((𝑎 ∈ V ↦
∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) |
| 2 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = ∅ → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾
ω)‘∅)) |
| 3 | 2 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑗 = ∅ → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆
𝐵)) |
| 4 | 3 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = ∅ → ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆
𝐵))) |
| 5 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)) |
| 6 | 5 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) |
| 7 | 6 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵))) |
| 8 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = suc 𝑘 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘)) |
| 9 | 8 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑗 = suc 𝑘 → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵)) |
| 10 | 9 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = suc 𝑘 → ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))) |
| 11 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) |
| 12 | 11 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵 ↔ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)) |
| 13 | 12 | imbi2d 330 |
. . . . . 6
⊢ (𝑗 = 𝑖 → ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑗) ⊆ 𝐵) ↔ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵))) |
| 14 | | setlikespec 5701 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| 15 | | fr0g 7531 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) =
Pred(𝑅, 𝐴, 𝑋)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) =
Pred(𝑅, 𝐴, 𝑋)) |
| 17 | 16 | adantr 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) =
Pred(𝑅, 𝐴, 𝑋)) |
| 18 | | simprr 796 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) |
| 19 | 17, 18 | eqsstrd 3639 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘∅) ⊆
𝐵) |
| 20 | | fvex 6201 |
. . . . . . . . . . 11
⊢
((rec((𝑐 ∈ V
↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V |
| 21 | | trpredlem1 31727 |
. . . . . . . . . . . . . . . 16
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴) |
| 22 | 14, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐴) |
| 23 | 22 | sseld 3602 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦 ∈ 𝐴)) |
| 24 | | setlikespec 5701 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑦) ∈ V) |
| 25 | 24 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Se 𝐴 → (𝑦 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V)) |
| 26 | 25 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑦 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑦) ∈ V)) |
| 27 | 23, 26 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ∈ V)) |
| 28 | 27 | ralrimiv 2965 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) |
| 29 | 28 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) |
| 30 | | iunexg 7143 |
. . . . . . . . . . 11
⊢
((((rec((𝑐 ∈ V
↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ∈ V ∧ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) |
| 31 | 20, 29, 30 | sylancr 695 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∪
𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) |
| 32 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎Pred(𝑅, 𝐴, 𝑋) |
| 33 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎𝑘 |
| 34 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) |
| 35 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
| 36 | | predeq3 5684 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑑 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑑)) |
| 37 | 36 | cbviunv 4559 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑑 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑑) |
| 38 | | iuneq1 4534 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑐 → ∪
𝑑 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑑) = ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)) |
| 39 | 37, 38 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑐 → ∪
𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)) |
| 40 | 39 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)) |
| 41 | | rdgeq1 7507 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)) = (𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)) → rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋))) |
| 42 | | reseq1 5390 |
. . . . . . . . . . . . . . 15
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) = rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) → (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)) |
| 43 | 40, 41, 42 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) |
| 44 | 43 | fveq1i 6192 |
. . . . . . . . . . . . 13
⊢
((rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) = ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) |
| 45 | 44 | eqeq2i 2634 |
. . . . . . . . . . . 12
⊢ (𝑎 = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ↔ 𝑎 = ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)) |
| 46 | | iuneq1 4534 |
. . . . . . . . . . . 12
⊢ (𝑎 = ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → ∪
𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)) |
| 47 | 45, 46 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝑎 = ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → ∪
𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦) = ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)) |
| 48 | 32, 33, 34, 35, 47 | frsucmpt 7533 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧ ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ∈ V) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)) |
| 49 | 31, 48 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) = ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦)) |
| 50 | 44 | sseq1i 3629 |
. . . . . . . . . . . 12
⊢
(((rec((𝑎 ∈ V
↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 ↔ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) |
| 51 | 50 | anbi2i 730 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) ↔ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) |
| 52 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) |
| 53 | | nfra1 2941 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 |
| 54 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 |
| 55 | 53, 54 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) |
| 56 | 52, 55 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) |
| 57 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 |
| 58 | 56, 57 | nfan 1828 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) |
| 59 | | ssel 3597 |
. . . . . . . . . . . . . 14
⊢
(((rec((𝑐 ∈ V
↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → 𝑦 ∈ 𝐵)) |
| 60 | | rsp 2929 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → (𝑦 ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)) |
| 61 | 60 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑦 ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)) |
| 62 | 59, 61 | sylan9r 690 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)) |
| 63 | 58, 62 | ralrimi 2957 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 64 | 63 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ω ∧ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 65 | 51, 64 | sylan2b 492 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 66 | | iunss 4561 |
. . . . . . . . . 10
⊢ (∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ↔ ∀𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 67 | 65, 66 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ∪ 𝑦 ∈ ((rec((𝑐 ∈ V ↦ ∪ 𝑑 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑑)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘)Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵) |
| 68 | 49, 67 | eqsstrd 3639 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) ∧ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵) |
| 69 | 68 | exp32 631 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))) |
| 70 | 69 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈ ω → ((((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑘) ⊆ 𝐵) → (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘suc 𝑘) ⊆ 𝐵))) |
| 71 | 4, 7, 10, 13, 19, 70 | finds 7092 |
. . . . 5
⊢ (𝑖 ∈ ω → (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)) |
| 72 | 71 | com12 32 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → (𝑖 ∈ ω → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵)) |
| 73 | 72 | ralrimiv 2965 |
. . 3
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵) |
| 74 | | iunss 4561 |
. . 3
⊢ (∪ 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵 ↔ ∀𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵) |
| 75 | 73, 74 | sylibr 224 |
. 2
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → ∪ 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐵) |
| 76 | 1, 75 | syl5eqss 3649 |
1
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) |