MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem3 Structured version   Visualization version   GIF version

Theorem summolem3 14445
Description: Lemma for summo 14448. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
summolem3.4 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
summolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
summolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
summolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
summolem3 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑓,𝑘,𝑛,𝐴   𝑓,𝐹,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝐵,𝑓,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑘)   𝐺(𝑓)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summolem3
Dummy variables 𝑖 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 10018 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ)
21adantl 482 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ)
3 addcom 10222 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
43adantl 482 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
5 addass 10023 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
65adantl 482 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
7 summolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 475 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 11723 . . . 4 ℕ = (ℤ‘1)
108, 9syl6eleq 2711 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 ssid 3624 . . . 4 ℂ ⊆ ℂ
1211a1i 11 . . 3 (𝜑 → ℂ ⊆ ℂ)
13 summolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
14 f1ocnv 6149 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1513, 14syl 17 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
16 summolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
17 f1oco 6159 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1815, 16, 17syl2anc 693 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
19 ovex 6678 . . . . . . . . . 10 (1...𝑁) ∈ V
2019f1oen 7976 . . . . . . . . 9 ((𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀) → (1...𝑁) ≈ (1...𝑀))
2118, 20syl 17 . . . . . . . 8 (𝜑 → (1...𝑁) ≈ (1...𝑀))
22 fzfi 12771 . . . . . . . . 9 (1...𝑁) ∈ Fin
23 fzfi 12771 . . . . . . . . 9 (1...𝑀) ∈ Fin
24 hashen 13135 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((#‘(1...𝑁)) = (#‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀)))
2522, 23, 24mp2an 708 . . . . . . . 8 ((#‘(1...𝑁)) = (#‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀))
2621, 25sylibr 224 . . . . . . 7 (𝜑 → (#‘(1...𝑁)) = (#‘(1...𝑀)))
277simprd 479 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
28 nnnn0 11299 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
29 hashfz1 13134 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
3027, 28, 293syl 18 . . . . . . 7 (𝜑 → (#‘(1...𝑁)) = 𝑁)
31 nnnn0 11299 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
32 hashfz1 13134 . . . . . . . 8 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
338, 31, 323syl 18 . . . . . . 7 (𝜑 → (#‘(1...𝑀)) = 𝑀)
3426, 30, 333eqtr3rd 2665 . . . . . 6 (𝜑𝑀 = 𝑁)
3534oveq2d 6666 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
36 f1oeq2 6128 . . . . 5 ((1...𝑀) = (1...𝑁) → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3735, 36syl 17 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3818, 37mpbird 247 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
39 elfznn 12370 . . . . . 6 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℕ)
4039adantl 482 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
41 f1of 6137 . . . . . . . 8 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
4213, 41syl 17 . . . . . . 7 (𝜑𝑓:(1...𝑀)⟶𝐴)
4342ffvelrnda 6359 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
44 summo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4544ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4645adantr 481 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
47 nfcsb1v 3549 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵
4847nfel1 2779 . . . . . . 7 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
49 csbeq1a 3542 . . . . . . . 8 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
5049eleq1d 2686 . . . . . . 7 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5148, 50rspc 3303 . . . . . 6 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5243, 46, 51sylc 65 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
53 fveq2 6191 . . . . . . 7 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
5453csbeq1d 3540 . . . . . 6 (𝑛 = 𝑚(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
55 summo.3 . . . . . 6 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
5654, 55fvmptg 6280 . . . . 5 ((𝑚 ∈ ℕ ∧ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5740, 52, 56syl2anc 693 . . . 4 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5857, 52eqeltrd 2701 . . 3 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
59 f1oeq2 6128 . . . . . . . . . . . 12 ((1...𝑀) = (1...𝑁) → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
6035, 59syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
6116, 60mpbird 247 . . . . . . . . . 10 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
62 f1of 6137 . . . . . . . . . 10 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
6361, 62syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)⟶𝐴)
64 fvco3 6275 . . . . . . . . 9 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6563, 64sylan 488 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6665fveq2d 6195 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
6713adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
6863ffvelrnda 6359 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
69 f1ocnvfv2 6533 . . . . . . . 8 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
7067, 68, 69syl2anc 693 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
7166, 70eqtr2d 2657 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) = (𝑓‘((𝑓𝐾)‘𝑖)))
7271csbeq1d 3540 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
7372fveq2d 6195 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → ( I ‘(𝐾𝑖) / 𝑘𝐵) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
74 elfznn 12370 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
7574adantl 482 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
76 fveq2 6191 . . . . . . 7 (𝑛 = 𝑖 → (𝐾𝑛) = (𝐾𝑖))
7776csbeq1d 3540 . . . . . 6 (𝑛 = 𝑖(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
78 summolem3.4 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ (𝐾𝑛) / 𝑘𝐵)
7977, 78fvmpti 6281 . . . . 5 (𝑖 ∈ ℕ → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
8075, 79syl 17 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
81 f1of 6137 . . . . . . 7 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
8238, 81syl 17 . . . . . 6 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
8382ffvelrnda 6359 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
84 elfznn 12370 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
85 fveq2 6191 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) = (𝑓‘((𝑓𝐾)‘𝑖)))
8685csbeq1d 3540 . . . . . 6 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
8786, 55fvmpti 6281 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ ℕ → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8883, 84, 873syl 18 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
8973, 80, 883eqtr4d 2666 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
902, 4, 6, 10, 12, 38, 58, 89seqf1o 12842 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀))
9134fveq2d 6195 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
9290, 91eqtr3d 2658 1 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729   I cid 5023  ccnv 5113  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cen 7952  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118
This theorem is referenced by:  summolem2a  14446  summo  14448
  Copyright terms: Public domain W3C validator