| Step | Hyp | Ref
| Expression |
| 1 | | isumshft.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | | isumshft.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 3 | 1, 2 | zaddcld 11486 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
| 4 | | isumshft.2 |
. . . . . . . . . 10
⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) |
| 5 | 4 | eleq2i 2693 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑊 ↔ 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) |
| 6 | 2 | zcnd 11483 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 7 | | eluzelcn 11699 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ) |
| 8 | 7, 4 | eleq2s 2719 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑊 → 𝑚 ∈ ℂ) |
| 9 | | isumshft.1 |
. . . . . . . . . . . . . 14
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 10 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) ∈ V |
| 11 | 9, 10 | eqeltri 2697 |
. . . . . . . . . . . . 13
⊢ 𝑍 ∈ V |
| 12 | 11 | mptex 6486 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) ∈ V |
| 13 | 12 | shftval 13814 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
| 14 | 6, 8, 13 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
| 15 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
| 16 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| 17 | 16 | fvmpt2i 6290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ( I ‘𝐵)) |
| 18 | 15, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ( I ‘𝐵)) |
| 19 | | eluzelcn 11699 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℂ) |
| 20 | 19, 9 | eleq2s 2719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 21 | | addcom 10222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 22 | 6, 20, 21 | syl2an 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 23 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) |
| 24 | 23, 9 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 25 | | eluzadd 11716 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| 26 | 24, 2, 25 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
| 27 | 22, 26 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
| 28 | 27, 4 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) ∈ 𝑊) |
| 29 | | isumshft.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵) |
| 30 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ 𝑊 ↦ 𝐴) = (𝑗 ∈ 𝑊 ↦ 𝐴) |
| 31 | 29, 30 | fvmpti 6281 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 + 𝑘) ∈ 𝑊 → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵)) |
| 32 | 28, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵)) |
| 33 | 18, 32 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘))) |
| 34 | 33 | ralrimiva 2966 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘))) |
| 35 | | nffvmpt1 6199 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) |
| 36 | 35 | nfeq1 2778 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) |
| 37 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 38 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛)) |
| 39 | 38 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
| 40 | 37, 39 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)))) |
| 41 | 36, 40 | rspc 3303 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑘)) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)))) |
| 42 | 34, 41 | mpan9 486 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
| 43 | 42 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
| 44 | 43 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ∀𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛))) |
| 45 | 1 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑀 ∈ ℤ) |
| 46 | 2 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝐾 ∈ ℤ) |
| 47 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ 𝑊) |
| 48 | 47, 4 | syl6eleq 2711 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) |
| 49 | | eluzsub 11717 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑀 + 𝐾))) → (𝑚 − 𝐾) ∈ (ℤ≥‘𝑀)) |
| 50 | 45, 46, 48, 49 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝑚 − 𝐾) ∈ (ℤ≥‘𝑀)) |
| 51 | 50, 9 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝑚 − 𝐾) ∈ 𝑍) |
| 52 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝐾) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾))) |
| 53 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 − 𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚 − 𝐾))) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝐾) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
| 55 | 52, 54 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 − 𝐾) → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾))))) |
| 56 | 55 | rspccva 3308 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚 − 𝐾) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
| 57 | 44, 51, 56 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑚 − 𝐾)) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾)))) |
| 58 | | pncan3 10289 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚 − 𝐾)) = 𝑚) |
| 59 | 6, 8, 58 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐾 + (𝑚 − 𝐾)) = 𝑚) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + (𝑚 − 𝐾))) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚)) |
| 61 | 14, 57, 60 | 3eqtrrd 2661 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚)) |
| 62 | 5, 61 | sylan2br 493 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 𝐾))) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = (((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)‘𝑚)) |
| 63 | 3, 62 | seqfeq 12826 |
. . . . . . 7
⊢ (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾))) |
| 64 | 63 | breq1d 4663 |
. . . . . 6
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)) ⇝ 𝑥)) |
| 65 | 12 | isershft 14394 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) →
(seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)) ⇝ 𝑥)) |
| 66 | 1, 2, 65 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘 ∈ 𝑍 ↦ 𝐵) shift 𝐾)) ⇝ 𝑥)) |
| 67 | 64, 66 | bitr4d 271 |
. . . . 5
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥)) |
| 68 | 67 | iotabidv 5872 |
. . . 4
⊢ (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥)) |
| 69 | | df-fv 5896 |
. . . 4
⊢ ( ⇝
‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)) ⇝ 𝑥) |
| 70 | | df-fv 5896 |
. . . 4
⊢ ( ⇝
‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵))) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)) ⇝ 𝑥) |
| 71 | 68, 69, 70 | 3eqtr4g 2681 |
. . 3
⊢ (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)))) |
| 72 | | eqidd 2623 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚)) |
| 73 | | isumshft.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ) |
| 74 | 73, 30 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ) |
| 75 | | ffvelrn 6357 |
. . . . 5
⊢ (((𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 76 | 74, 75 | sylan 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 77 | 4, 3, 72, 76 | isum 14450 |
. . 3
⊢ (𝜑 → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗 ∈ 𝑊 ↦ 𝐴)))) |
| 78 | | eqidd 2623 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 79 | 74 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ) |
| 80 | 28 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐾 + 𝑘) ∈ 𝑊) |
| 81 | 38 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊)) |
| 82 | 81 | rspccva 3308 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝑍 (𝐾 + 𝑘) ∈ 𝑊 ∧ 𝑛 ∈ 𝑍) → (𝐾 + 𝑛) ∈ 𝑊) |
| 83 | 80, 82 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐾 + 𝑛) ∈ 𝑊) |
| 84 | | ffvelrn 6357 |
. . . . . 6
⊢ (((𝑗 ∈ 𝑊 ↦ 𝐴):𝑊⟶ℂ ∧ (𝐾 + 𝑛) ∈ 𝑊) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ∈ ℂ) |
| 85 | 79, 83, 84 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑗 ∈ 𝑊 ↦ 𝐴)‘(𝐾 + 𝑛)) ∈ ℂ) |
| 86 | 42, 85 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) ∈ ℂ) |
| 87 | 9, 1, 78, 86 | isum 14450 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐵)))) |
| 88 | 71, 77, 87 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = Σ𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛)) |
| 89 | | sumfc 14440 |
. 2
⊢
Σ𝑚 ∈
𝑊 ((𝑗 ∈ 𝑊 ↦ 𝐴)‘𝑚) = Σ𝑗 ∈ 𝑊 𝐴 |
| 90 | | sumfc 14440 |
. 2
⊢
Σ𝑛 ∈
𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑛) = Σ𝑘 ∈ 𝑍 𝐵 |
| 91 | 88, 89, 90 | 3eqtr3g 2679 |
1
⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |