MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0 Structured version   Visualization version   GIF version

Theorem fprodn0 14709
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
fprodn0.1 (𝜑𝐴 ∈ Fin)
fprodn0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0.3 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodn0
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14639 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
2 prod0 14673 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
31, 2syl6eq 2672 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 = 1)
4 ax-1ne0 10005 . . . . 5 1 ≠ 0
54a1i 11 . . . 4 (𝐴 = ∅ → 1 ≠ 0)
63, 5eqnetrd 2861 . . 3 (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0)
76a1i 11 . 2 (𝜑 → (𝐴 = ∅ → ∏𝑘𝐴 𝐵 ≠ 0))
8 prodfc 14675 . . . . . . 7 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
9 fveq2 6191 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
10 simprl 794 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ ℕ)
11 simprr 796 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)
12 fprodn0.2 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
13 eqid 2622 . . . . . . . . . . 11 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1412, 13fmptd 6385 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
1514adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
1615ffvelrnda 6359 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
17 f1of 6137 . . . . . . . . . 10 (𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑓:(1...(#‘𝐴))⟶𝐴)
1811, 17syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴)
19 fvco3 6275 . . . . . . . . 9 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
2018, 19sylan 488 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
219, 10, 11, 16, 20fprod 14671 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
228, 21syl5eqr 2670 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 = (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)))
23 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
2410, 23syl6eleq 2711 . . . . . . 7 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (#‘𝐴) ∈ (ℤ‘1))
25 fco 6058 . . . . . . . . 9 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2615, 18, 25syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ)
2726ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ∈ ℂ)
28 fvco3 6275 . . . . . . . . 9 ((𝑓:(1...(#‘𝐴))⟶𝐴𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
2918, 28sylan 488 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑚)))
3017ffvelrnda 6359 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐴))–1-1-onto𝐴𝑚 ∈ (1...(#‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
3130adantll 750 . . . . . . . . . 10 ((((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (𝑓𝑚) ∈ 𝐴)
32 simpr 477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) ∈ 𝐴)
33 nfcv 2764 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚)
34 nfv 1843 . . . . . . . . . . . . . . 15 𝑘𝜑
35 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑚) / 𝑘𝐵
3635nfel1 2779 . . . . . . . . . . . . . . 15 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
3734, 36nfim 1825 . . . . . . . . . . . . . 14 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
38 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
3938eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4039imbi2d 330 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ∈ ℂ) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ)))
4112expcom 451 . . . . . . . . . . . . . 14 (𝑘𝐴 → (𝜑𝐵 ∈ ℂ))
4233, 37, 40, 41vtoclgaf 3271 . . . . . . . . . . . . 13 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4342impcom 446 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
4413fvmpts 6285 . . . . . . . . . . . 12 (((𝑓𝑚) ∈ 𝐴(𝑓𝑚) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
4532, 43, 44syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) = (𝑓𝑚) / 𝑘𝐵)
46 nfcv 2764 . . . . . . . . . . . . . . 15 𝑘0
4735, 46nfne 2894 . . . . . . . . . . . . . 14 𝑘(𝑓𝑚) / 𝑘𝐵 ≠ 0
4834, 47nfim 1825 . . . . . . . . . . . . 13 𝑘(𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)
4938neeq1d 2853 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑚) → (𝐵 ≠ 0 ↔ (𝑓𝑚) / 𝑘𝐵 ≠ 0))
5049imbi2d 330 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑚) → ((𝜑𝐵 ≠ 0) ↔ (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0)))
51 fprodn0.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
5251expcom 451 . . . . . . . . . . . . 13 (𝑘𝐴 → (𝜑𝐵 ≠ 0))
5333, 48, 50, 52vtoclgaf 3271 . . . . . . . . . . . 12 ((𝑓𝑚) ∈ 𝐴 → (𝜑(𝑓𝑚) / 𝑘𝐵 ≠ 0))
5453impcom 446 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → (𝑓𝑚) / 𝑘𝐵 ≠ 0)
5545, 54eqnetrd 2861 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5631, 55sylan2 491 . . . . . . . . 9 ((𝜑 ∧ (((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) ∧ 𝑚 ∈ (1...(#‘𝐴)))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5756anassrs 680 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → ((𝑘𝐴𝐵)‘(𝑓𝑚)) ≠ 0)
5829, 57eqnetrd 2861 . . . . . . 7 (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) ∧ 𝑚 ∈ (1...(#‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑚) ≠ 0)
5924, 27, 58prodfn0 14626 . . . . . 6 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → (seq1( · , ((𝑘𝐴𝐵) ∘ 𝑓))‘(#‘𝐴)) ≠ 0)
6022, 59eqnetrd 2861 . . . . 5 ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 𝐵 ≠ 0)
6160expr 643 . . . 4 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6261exlimdv 1861 . . 3 ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 𝐵 ≠ 0))
6362expimpd 629 . 2 (𝜑 → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 𝐵 ≠ 0))
64 fprodn0.1 . . 3 (𝜑𝐴 ∈ Fin)
65 fz1f1o 14441 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
6664, 65syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto𝐴)))
677, 63, 66mpjaod 396 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  csb 3533  c0 3915  cmpt 4729  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   · cmul 9941  cn 11020  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  fallfacval4  14774  absprodnn  15331  bcc0  38539  mccllem  39829  dvnprodlem2  40162  etransclem15  40466  etransclem25  40476  etransclem31  40482  etransclem32  40483  etransclem33  40484  etransclem34  40485
  Copyright terms: Public domain W3C validator