![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptnn0fz | Structured version Visualization version GIF version |
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
Ref | Expression |
---|---|
gsummptnn0fz.k | ⊢ Ⅎ𝑘𝜑 |
gsummptnn0fz.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptnn0fz.0 | ⊢ 0 = (0g‘𝐺) |
gsummptnn0fz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptnn0fz.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
gsummptnn0fz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
gsummptnn0fz.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) |
Ref | Expression |
---|---|
gsummptnn0fz | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptnn0fz.u | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) | |
2 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑥(𝑆 < 𝑘 → 𝐶 = 0 ) | |
3 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑘 𝑆 < 𝑥 | |
4 | nfcsb1v 3549 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 | |
5 | 4 | nfeq1 2778 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 = 0 |
6 | 3, 5 | nfim 1825 | . . . . 5 ⊢ Ⅎ𝑘(𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
7 | breq2 4657 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑆 < 𝑘 ↔ 𝑆 < 𝑥)) | |
8 | csbeq1a 3542 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → 𝐶 = ⦋𝑥 / 𝑘⦌𝐶) | |
9 | 8 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝐶 = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
10 | 7, 9 | imbi12d 334 | . . . . 5 ⊢ (𝑘 = 𝑥 → ((𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
11 | 2, 6, 10 | cbvral 3167 | . . . 4 ⊢ (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
12 | 1, 11 | sylib 208 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
13 | simpr 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
14 | gsummptnn0fz.f | . . . . . . . . . . . . 13 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) | |
15 | 14 | anim2i 593 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝜑) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵)) |
16 | 15 | ancoms 469 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵)) |
17 | rspcsbela 4006 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
18 | 16, 17 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
19 | 13, 18 | jca 554 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
20 | 19 | adantr 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
21 | eqid 2622 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
22 | 21 | fvmpts 6285 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
23 | 20, 22 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
24 | simpr 477 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) | |
25 | 23, 24 | eqtrd 2656 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) |
26 | 25 | ex 450 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (⦋𝑥 / 𝑘⦌𝐶 = 0 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
27 | 26 | imim2d 57 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
28 | 27 | ralimdva 2962 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
29 | 12, 28 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
30 | gsummptnn0fz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
31 | gsummptnn0fz.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
32 | gsummptnn0fz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
33 | 21 | fmpt 6381 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
34 | 14, 33 | sylib 208 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
35 | fvex 6201 | . . . . . . 7 ⊢ (Base‘𝐺) ∈ V | |
36 | 30, 35 | eqeltri 2697 | . . . . . 6 ⊢ 𝐵 ∈ V |
37 | nn0ex 11298 | . . . . . 6 ⊢ ℕ0 ∈ V | |
38 | 36, 37 | pm3.2i 471 | . . . . 5 ⊢ (𝐵 ∈ V ∧ ℕ0 ∈ V) |
39 | elmapg 7870 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑𝑚 ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) | |
40 | 38, 39 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑𝑚 ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) |
41 | 34, 40 | mpbird 247 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑𝑚 ℕ0)) |
42 | gsummptnn0fz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
43 | fz0ssnn0 12435 | . . . . 5 ⊢ (0...𝑆) ⊆ ℕ0 | |
44 | resmpt 5449 | . . . . 5 ⊢ ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)) | |
45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶) |
46 | 45 | eqcomi 2631 | . . 3 ⊢ (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) |
47 | 30, 31, 32, 41, 42, 46 | fsfnn0gsumfsffz 18379 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))) |
48 | 29, 47 | mpd 15 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⦋csb 3533 ⊆ wss 3574 class class class wbr 4653 ↦ cmpt 4729 ↾ cres 5116 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 0cc0 9936 < clt 10074 ℕ0cn0 11292 ...cfz 12326 Basecbs 15857 0gc0g 16100 Σg cgsu 16101 CMndccmn 18193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-cntz 17750 df-cmn 18195 |
This theorem is referenced by: gsummptnn0fzv 18383 gsummoncoe1 19674 pmatcollpwfi 20587 |
Copyright terms: Public domain | W3C validator |