![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ga0 | Structured version Visualization version GIF version |
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
ga0 | ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | jctr 565 | . 2 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ Grp ∧ ∅ ∈ V)) |
3 | f0 6086 | . . . . 5 ⊢ ∅:∅⟶∅ | |
4 | xp0 5552 | . . . . . 6 ⊢ ((Base‘𝐺) × ∅) = ∅ | |
5 | 4 | feq2i 6037 | . . . . 5 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ↔ ∅:∅⟶∅) |
6 | 3, 5 | mpbir 221 | . . . 4 ⊢ ∅:((Base‘𝐺) × ∅)⟶∅ |
7 | ral0 4076 | . . . 4 ⊢ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥))) | |
8 | 6, 7 | pm3.2i 471 | . . 3 ⊢ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥))))) |
10 | eqid 2622 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | eqid 2622 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | eqid 2622 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
13 | 10, 11, 12 | isga 17724 | . 2 ⊢ (∅ ∈ (𝐺 GrpAct ∅) ↔ ((𝐺 ∈ Grp ∧ ∅ ∈ V) ∧ (∅:((Base‘𝐺) × ∅)⟶∅ ∧ ∀𝑥 ∈ ∅ (((0g‘𝐺)∅𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑦(+g‘𝐺)𝑧)∅𝑥) = (𝑦∅(𝑧∅𝑥)))))) |
14 | 2, 9, 13 | sylanbrc 698 | 1 ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∅c0 3915 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Grpcgrp 17422 GrpAct cga 17722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ga 17723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |