MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Visualization version   GIF version

Theorem isga 17724
Description: The predicate "is a (left) group action." The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 17739). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1 𝑋 = (Base‘𝐺)
isga.2 + = (+g𝐺)
isga.3 0 = (0g𝐺)
Assertion
Ref Expression
isga ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑦,𝑋,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑋(𝑥)   0 (𝑥,𝑦,𝑧)

Proof of Theorem isga
Dummy variables 𝑔 𝑏 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 17723 . . 3 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
21elmpt2cl 6876 . 2 ( ∈ (𝐺 GrpAct 𝑌) → (𝐺 ∈ Grp ∧ 𝑌 ∈ V))
3 fvexd 6203 . . . . . . 7 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) ∈ V)
4 simplr 792 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑠 = 𝑌)
5 id 22 . . . . . . . . . . 11 (𝑏 = (Base‘𝑔) → 𝑏 = (Base‘𝑔))
6 simpl 473 . . . . . . . . . . . . 13 ((𝑔 = 𝐺𝑠 = 𝑌) → 𝑔 = 𝐺)
76fveq2d 6195 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = (Base‘𝐺))
8 isga.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
97, 8syl6eqr 2674 . . . . . . . . . . 11 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) = 𝑋)
105, 9sylan9eqr 2678 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑏 = 𝑋)
1110, 4xpeq12d 5140 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑏 × 𝑠) = (𝑋 × 𝑌))
124, 11oveq12d 6668 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑠𝑚 (𝑏 × 𝑠)) = (𝑌𝑚 (𝑋 × 𝑌)))
13 simpll 790 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → 𝑔 = 𝐺)
1413fveq2d 6195 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = (0g𝐺))
15 isga.3 . . . . . . . . . . . . 13 0 = (0g𝐺)
1614, 15syl6eqr 2674 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (0g𝑔) = 0 )
1716oveq1d 6665 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((0g𝑔)𝑚𝑥) = ( 0 𝑚𝑥))
1817eqeq1d 2624 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((0g𝑔)𝑚𝑥) = 𝑥 ↔ ( 0 𝑚𝑥) = 𝑥))
1913fveq2d 6195 . . . . . . . . . . . . . . . 16 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = (+g𝐺))
20 isga.2 . . . . . . . . . . . . . . . 16 + = (+g𝐺)
2119, 20syl6eqr 2674 . . . . . . . . . . . . . . 15 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (+g𝑔) = + )
2221oveqd 6667 . . . . . . . . . . . . . 14 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (𝑦(+g𝑔)𝑧) = (𝑦 + 𝑧))
2322oveq1d 6665 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((𝑦(+g𝑔)𝑧)𝑚𝑥) = ((𝑦 + 𝑧)𝑚𝑥))
2423eqeq1d 2624 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2510, 24raleqbidv 3152 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2610, 25raleqbidv 3152 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))))
2718, 26anbi12d 747 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → ((((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
284, 27raleqbidv 3152 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → (∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))))
2912, 28rabeqbidv 3195 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑌) ∧ 𝑏 = (Base‘𝑔)) → {𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
303, 29csbied 3560 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑌) → (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠𝑚 (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
31 ovex 6678 . . . . . . 7 (𝑌𝑚 (𝑋 × 𝑌)) ∈ V
3231rabex 4813 . . . . . 6 {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ∈ V
3330, 1, 32ovmpt2a 6791 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝐺 GrpAct 𝑌) = {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
3433eleq2d 2687 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ∈ {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}))
35 oveq 6656 . . . . . . . 8 (𝑚 = → ( 0 𝑚𝑥) = ( 0 𝑥))
3635eqeq1d 2624 . . . . . . 7 (𝑚 = → (( 0 𝑚𝑥) = 𝑥 ↔ ( 0 𝑥) = 𝑥))
37 oveq 6656 . . . . . . . . 9 (𝑚 = → ((𝑦 + 𝑧)𝑚𝑥) = ((𝑦 + 𝑧) 𝑥))
38 oveq 6656 . . . . . . . . . 10 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧𝑚𝑥)))
39 oveq 6656 . . . . . . . . . . 11 (𝑚 = → (𝑧𝑚𝑥) = (𝑧 𝑥))
4039oveq2d 6666 . . . . . . . . . 10 (𝑚 = → (𝑦 (𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4138, 40eqtrd 2656 . . . . . . . . 9 (𝑚 = → (𝑦𝑚(𝑧𝑚𝑥)) = (𝑦 (𝑧 𝑥)))
4237, 41eqeq12d 2637 . . . . . . . 8 (𝑚 = → (((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
43422ralbidv 2989 . . . . . . 7 (𝑚 = → (∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
4436, 43anbi12d 747 . . . . . 6 (𝑚 = → ((( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4544ralbidv 2986 . . . . 5 (𝑚 = → (∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥))) ↔ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4645elrab 3363 . . . 4 ( ∈ {𝑚 ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∣ ∀𝑥𝑌 (( 0 𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))} ↔ ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
4734, 46syl6bb 276 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
48 simpr 477 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
49 fvex 6201 . . . . . . 7 (Base‘𝐺) ∈ V
508, 49eqeltri 2697 . . . . . 6 𝑋 ∈ V
51 xpexg 6960 . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5250, 48, 51sylancr 695 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
5348, 52elmapd 7871 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ↔ :(𝑋 × 𝑌)⟶𝑌))
5453anbi1d 741 . . 3 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → (( ∈ (𝑌𝑚 (𝑋 × 𝑌)) ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
5547, 54bitrd 268 . 2 ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) → ( ∈ (𝐺 GrpAct 𝑌) ↔ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
562, 55biadan2 674 1 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (( 0 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  csb 3533   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ga 17723
This theorem is referenced by:  gagrp  17725  gaset  17726  gagrpid  17727  gaf  17728  gaass  17730  ga0  17731  gaid  17732  subgga  17733  gass  17734  gasubg  17735  lactghmga  17824  sylow1lem2  18014  sylow2blem2  18036  sylow3lem1  18042
  Copyright terms: Public domain W3C validator