MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ga0 Structured version   Visualization version   Unicode version

Theorem ga0 17731
Description: The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Assertion
Ref Expression
ga0  |-  ( G  e.  Grp  ->  (/)  e.  ( G  GrpAct  (/) ) )

Proof of Theorem ga0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . 3  |-  (/)  e.  _V
21jctr 565 . 2  |-  ( G  e.  Grp  ->  ( G  e.  Grp  /\  (/)  e.  _V ) )
3 f0 6086 . . . . 5  |-  (/) : (/) --> (/)
4 xp0 5552 . . . . . 6  |-  ( (
Base `  G )  X.  (/) )  =  (/)
54feq2i 6037 . . . . 5  |-  ( (/) : ( ( Base `  G
)  X.  (/) ) --> (/)  <->  (/) : (/) --> (/) )
63, 5mpbir 221 . . . 4  |-  (/) : ( ( Base `  G
)  X.  (/) ) --> (/)
7 ral0 4076 . . . 4  |-  A. x  e.  (/)  ( ( ( 0g `  G )
(/) x )  =  x  /\  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z ) (/) x )  =  ( y (/) ( z (/) x ) ) )
86, 7pm3.2i 471 . . 3  |-  ( (/) : ( ( Base `  G
)  X.  (/) ) --> (/)  /\ 
A. x  e.  (/)  ( ( ( 0g
`  G ) (/) x )  =  x  /\  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z ) (/) x )  =  ( y (/) ( z (/) x ) ) ) )
98a1i 11 . 2  |-  ( G  e.  Grp  ->  ( (/)
: ( ( Base `  G )  X.  (/) ) --> (/)  /\ 
A. x  e.  (/)  ( ( ( 0g
`  G ) (/) x )  =  x  /\  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z ) (/) x )  =  ( y (/) ( z (/) x ) ) ) ) )
10 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
11 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
12 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
1310, 11, 12isga 17724 . 2  |-  ( (/)  e.  ( G  GrpAct  (/) )  <->  ( ( G  e.  Grp  /\  (/)  e.  _V )  /\  ( (/) : ( ( Base `  G
)  X.  (/) ) --> (/)  /\ 
A. x  e.  (/)  ( ( ( 0g
`  G ) (/) x )  =  x  /\  A. y  e.  ( Base `  G
) A. z  e.  ( Base `  G
) ( ( y ( +g  `  G
) z ) (/) x )  =  ( y (/) ( z (/) x ) ) ) ) ) )
142, 9, 13sylanbrc 698 1  |-  ( G  e.  Grp  ->  (/)  e.  ( G  GrpAct  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ga 17723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator