| Step | Hyp | Ref
| Expression |
| 1 | | ovres 6800 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) = (𝑥 ⊕ 𝑦)) |
| 2 | 1 | adantl 482 |
. . . 4
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) = (𝑥 ⊕ 𝑦)) |
| 3 | | gass.1 |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
| 4 | 3 | gaf 17728 |
. . . . . 6
⊢ (( ⊕
↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
| 5 | 4 | adantl 482 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
| 6 | 5 | fovrnda 6805 |
. . . 4
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍) |
| 7 | 2, 6 | eqeltrrd 2702 |
. . 3
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥 ⊕ 𝑦) ∈ 𝑍) |
| 8 | 7 | ralrimivva 2971 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
| 9 | | gagrp 17725 |
. . . . 5
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
| 10 | 9 | ad2antrr 762 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝐺 ∈ Grp) |
| 11 | | gaset 17726 |
. . . . . . 7
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝑌 ∈ V) |
| 12 | 11 | adantr 481 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑌 ∈ V) |
| 13 | | simpr 477 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑍 ⊆ 𝑌) |
| 14 | 12, 13 | ssexd 4805 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑍 ∈ V) |
| 15 | 14 | adantr 481 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝑍 ∈ V) |
| 16 | 10, 15 | jca 554 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝐺 ∈ Grp ∧ 𝑍 ∈ V)) |
| 17 | 3 | gaf 17728 |
. . . . . . . 8
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 18 | 17 | ad2antrr 762 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| 19 | | ffn 6045 |
. . . . . . 7
⊢ ( ⊕
:(𝑋 × 𝑌)⟶𝑌 → ⊕ Fn (𝑋 × 𝑌)) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ Fn (𝑋 × 𝑌)) |
| 21 | | simplr 792 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝑍 ⊆ 𝑌) |
| 22 | | xpss2 5229 |
. . . . . . 7
⊢ (𝑍 ⊆ 𝑌 → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) |
| 23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) |
| 24 | | fnssres 6004 |
. . . . . 6
⊢ (( ⊕ Fn
(𝑋 × 𝑌) ∧ (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) → ( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍)) |
| 25 | 20, 23, 24 | syl2anc 693 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍)) |
| 26 | | simpr 477 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
| 27 | 1 | eleq1d 2686 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍) → ((𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ (𝑥 ⊕ 𝑦) ∈ 𝑍)) |
| 28 | 27 | ralbidva 2985 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → (∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) |
| 29 | 28 | ralbiia 2979 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
| 30 | 26, 29 | sylibr 224 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍) |
| 31 | | ffnov 6764 |
. . . . 5
⊢ (( ⊕
↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ↔ (( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)) |
| 32 | 25, 30, 31 | sylanbrc 698 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
| 33 | | eqid 2622 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 34 | 3, 33 | grpidcl 17450 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
| 35 | 10, 34 | syl 17 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (0g‘𝐺) ∈ 𝑋) |
| 36 | | ovres 6800 |
. . . . . . . 8
⊢
(((0g‘𝐺) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((0g‘𝐺) ⊕ 𝑧)) |
| 37 | 35, 36 | sylan 488 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((0g‘𝐺) ⊕ 𝑧)) |
| 38 | 21 | sselda 3603 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑌) |
| 39 | | simpll 790 |
. . . . . . . . 9
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 40 | 33 | gagrpid 17727 |
. . . . . . . . 9
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑧 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑧) = 𝑧) |
| 41 | 39, 40 | sylan 488 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑧) = 𝑧) |
| 42 | 38, 41 | syldan 487 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺) ⊕ 𝑧) = 𝑧) |
| 43 | 37, 42 | eqtrd 2656 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧) |
| 44 | 39 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
| 45 | | simprl 794 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑢 ∈ 𝑋) |
| 46 | | simprr 796 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑣 ∈ 𝑋) |
| 47 | 38 | adantr 481 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑧 ∈ 𝑌) |
| 48 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 49 | 3, 48 | gaass 17730 |
. . . . . . . . . 10
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 50 | 44, 45, 46, 47, 49 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 51 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑧 ∈ 𝑍) |
| 52 | | simpllr 799 |
. . . . . . . . . . 11
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
| 53 | | ovrspc2v 6672 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝑣 ⊕ 𝑧) ∈ 𝑍) |
| 54 | 46, 51, 52, 53 | syl21anc 1325 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣 ⊕ 𝑧) ∈ 𝑍) |
| 55 | | ovres 6800 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑋 ∧ (𝑣 ⊕ 𝑧) ∈ 𝑍) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧)) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 56 | 45, 54, 55 | syl2anc 693 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧)) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
| 57 | 50, 56 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧))) |
| 58 | 10 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 59 | 3, 48 | grpcl 17430 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (𝑢(+g‘𝐺)𝑣) ∈ 𝑋) |
| 60 | 58, 45, 46, 59 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢(+g‘𝐺)𝑣) ∈ 𝑋) |
| 61 | | ovres 6800 |
. . . . . . . . 9
⊢ (((𝑢(+g‘𝐺)𝑣) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧)) |
| 62 | 60, 51, 61 | syl2anc 693 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧)) |
| 63 | | ovres 6800 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → (𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑣 ⊕ 𝑧)) |
| 64 | 46, 51, 63 | syl2anc 693 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑣 ⊕ 𝑧)) |
| 65 | 64 | oveq2d 6666 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧))) |
| 66 | 57, 62, 65 | 3eqtr4d 2666 |
. . . . . . 7
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))) |
| 67 | 66 | ralrimivva 2971 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))) |
| 68 | 43, 67 | jca 554 |
. . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))) |
| 69 | 68 | ralrimiva 2966 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))) |
| 70 | 32, 69 | jca 554 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))))) |
| 71 | 3, 48, 33 | isga 17724 |
. . 3
⊢ (( ⊕
↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ((𝐺 ∈ Grp ∧ 𝑍 ∈ V) ∧ (( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))))) |
| 72 | 16, 70, 71 | sylanbrc 698 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) |
| 73 | 8, 72 | impbida 877 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → (( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) |