| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gass | Structured version Visualization version Unicode version | ||
| Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| gass.1 |
|
| Ref | Expression |
|---|---|
| gass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 6800 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | gass.1 |
. . . . . . 7
| |
| 4 | 3 | gaf 17728 |
. . . . . 6
|
| 5 | 4 | adantl 482 |
. . . . 5
|
| 6 | 5 | fovrnda 6805 |
. . . 4
|
| 7 | 2, 6 | eqeltrrd 2702 |
. . 3
|
| 8 | 7 | ralrimivva 2971 |
. 2
|
| 9 | gagrp 17725 |
. . . . 5
| |
| 10 | 9 | ad2antrr 762 |
. . . 4
|
| 11 | gaset 17726 |
. . . . . . 7
| |
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | simpr 477 |
. . . . . 6
| |
| 14 | 12, 13 | ssexd 4805 |
. . . . 5
|
| 15 | 14 | adantr 481 |
. . . 4
|
| 16 | 10, 15 | jca 554 |
. . 3
|
| 17 | 3 | gaf 17728 |
. . . . . . . 8
|
| 18 | 17 | ad2antrr 762 |
. . . . . . 7
|
| 19 | ffn 6045 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 17 |
. . . . . 6
|
| 21 | simplr 792 |
. . . . . . 7
| |
| 22 | xpss2 5229 |
. . . . . . 7
| |
| 23 | 21, 22 | syl 17 |
. . . . . 6
|
| 24 | fnssres 6004 |
. . . . . 6
| |
| 25 | 20, 23, 24 | syl2anc 693 |
. . . . 5
|
| 26 | simpr 477 |
. . . . . 6
| |
| 27 | 1 | eleq1d 2686 |
. . . . . . . 8
|
| 28 | 27 | ralbidva 2985 |
. . . . . . 7
|
| 29 | 28 | ralbiia 2979 |
. . . . . 6
|
| 30 | 26, 29 | sylibr 224 |
. . . . 5
|
| 31 | ffnov 6764 |
. . . . 5
| |
| 32 | 25, 30, 31 | sylanbrc 698 |
. . . 4
|
| 33 | eqid 2622 |
. . . . . . . . . 10
| |
| 34 | 3, 33 | grpidcl 17450 |
. . . . . . . . 9
|
| 35 | 10, 34 | syl 17 |
. . . . . . . 8
|
| 36 | ovres 6800 |
. . . . . . . 8
| |
| 37 | 35, 36 | sylan 488 |
. . . . . . 7
|
| 38 | 21 | sselda 3603 |
. . . . . . . 8
|
| 39 | simpll 790 |
. . . . . . . . 9
| |
| 40 | 33 | gagrpid 17727 |
. . . . . . . . 9
|
| 41 | 39, 40 | sylan 488 |
. . . . . . . 8
|
| 42 | 38, 41 | syldan 487 |
. . . . . . 7
|
| 43 | 37, 42 | eqtrd 2656 |
. . . . . 6
|
| 44 | 39 | ad2antrr 762 |
. . . . . . . . . 10
|
| 45 | simprl 794 |
. . . . . . . . . 10
| |
| 46 | simprr 796 |
. . . . . . . . . 10
| |
| 47 | 38 | adantr 481 |
. . . . . . . . . 10
|
| 48 | eqid 2622 |
. . . . . . . . . . 11
| |
| 49 | 3, 48 | gaass 17730 |
. . . . . . . . . 10
|
| 50 | 44, 45, 46, 47, 49 | syl13anc 1328 |
. . . . . . . . 9
|
| 51 | simplr 792 |
. . . . . . . . . . 11
| |
| 52 | simpllr 799 |
. . . . . . . . . . 11
| |
| 53 | ovrspc2v 6672 |
. . . . . . . . . . 11
| |
| 54 | 46, 51, 52, 53 | syl21anc 1325 |
. . . . . . . . . 10
|
| 55 | ovres 6800 |
. . . . . . . . . 10
| |
| 56 | 45, 54, 55 | syl2anc 693 |
. . . . . . . . 9
|
| 57 | 50, 56 | eqtr4d 2659 |
. . . . . . . 8
|
| 58 | 10 | ad2antrr 762 |
. . . . . . . . . 10
|
| 59 | 3, 48 | grpcl 17430 |
. . . . . . . . . 10
|
| 60 | 58, 45, 46, 59 | syl3anc 1326 |
. . . . . . . . 9
|
| 61 | ovres 6800 |
. . . . . . . . 9
| |
| 62 | 60, 51, 61 | syl2anc 693 |
. . . . . . . 8
|
| 63 | ovres 6800 |
. . . . . . . . . 10
| |
| 64 | 46, 51, 63 | syl2anc 693 |
. . . . . . . . 9
|
| 65 | 64 | oveq2d 6666 |
. . . . . . . 8
|
| 66 | 57, 62, 65 | 3eqtr4d 2666 |
. . . . . . 7
|
| 67 | 66 | ralrimivva 2971 |
. . . . . 6
|
| 68 | 43, 67 | jca 554 |
. . . . 5
|
| 69 | 68 | ralrimiva 2966 |
. . . 4
|
| 70 | 32, 69 | jca 554 |
. . 3
|
| 71 | 3, 48, 33 | isga 17724 |
. . 3
|
| 72 | 16, 70, 71 | sylanbrc 698 |
. 2
|
| 73 | 8, 72 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ga 17723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |