MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Visualization version   GIF version

Theorem gasubg 17735
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
gasubg (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))

Proof of Theorem gasubg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 17726 . . 3 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
2 gasubg.1 . . . 4 𝐻 = (𝐺s 𝑆)
32subggrp 17597 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3anim12ci 591 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐻 ∈ Grp ∧ 𝑌 ∈ V))
5 eqid 2622 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65gaf 17728 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :((Base‘𝐺) × 𝑌)⟶𝑌)
76adantr 481 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
8 simpr 477 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
95subgss 17595 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
108, 9syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
11 xpss1 5228 . . . . . 6 (𝑆 ⊆ (Base‘𝐺) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
1210, 11syl 17 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) ⊆ ((Base‘𝐺) × 𝑌))
137, 12fssresd 6071 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌)
142subgbas 17598 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
158, 14syl 17 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
1615xpeq1d 5138 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑆 × 𝑌) = ((Base‘𝐻) × 𝑌))
1716feq2d 6031 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):(𝑆 × 𝑌)⟶𝑌 ↔ ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌))
1813, 17mpbid 222 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌)
198adantr 481 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑆 ∈ (SubGrp‘𝐺))
20 eqid 2622 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
2120subg0cl 17602 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
2219, 21syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) ∈ 𝑆)
23 simpr 477 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → 𝑥𝑌)
24 ovres 6800 . . . . . . 7 (((0g𝐺) ∈ 𝑆𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
2522, 23, 24syl2anc 693 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐺) 𝑥))
262, 20subg0 17600 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
2719, 26syl 17 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (0g𝐺) = (0g𝐻))
2827oveq1d 6665 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺)( ↾ (𝑆 × 𝑌))𝑥) = ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥))
2920gagrpid 17727 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3029adantlr 751 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐺) 𝑥) = 𝑥)
3125, 28, 303eqtr3d 2664 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥)
32 eqimss2 3658 . . . . . . . . . . 11 (𝑆 = (Base‘𝐻) → (Base‘𝐻) ⊆ 𝑆)
3315, 32syl 17 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐻) ⊆ 𝑆)
3433adantr 481 . . . . . . . . 9 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (Base‘𝐻) ⊆ 𝑆)
3534sselda 3603 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑦 ∈ (Base‘𝐻)) → 𝑦𝑆)
3634sselda 3603 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ 𝑧 ∈ (Base‘𝐻)) → 𝑧𝑆)
3735, 36anim12dan 882 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → (𝑦𝑆𝑧𝑆))
38 simprl 794 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
397ad2antrr 762 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → :((Base‘𝐺) × 𝑌)⟶𝑌)
409ad3antlr 767 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑆 ⊆ (Base‘𝐺))
41 simprr 796 . . . . . . . . . . . 12 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
4240, 41sseldd 3604 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (Base‘𝐺))
4323adantr 481 . . . . . . . . . . 11 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑥𝑌)
4439, 42, 43fovrnd 6806 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 𝑥) ∈ 𝑌)
45 ovres 6800 . . . . . . . . . 10 ((𝑦𝑆 ∧ (𝑧 𝑥) ∈ 𝑌) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
4638, 44, 45syl2anc 693 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)) = (𝑦 (𝑧 𝑥)))
47 ovres 6800 . . . . . . . . . . 11 ((𝑧𝑆𝑥𝑌) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4841, 43, 47syl2anc 693 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑧( ↾ (𝑆 × 𝑌))𝑥) = (𝑧 𝑥))
4948oveq2d 6666 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧 𝑥)))
50 simplll 798 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ∈ (𝐺 GrpAct 𝑌))
5140, 38sseldd 3604 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (Base‘𝐺))
52 eqid 2622 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
535, 52gaass 17730 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑥𝑌)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5450, 51, 42, 43, 53syl13anc 1328 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
5546, 49, 543eqtr4d 2666 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)) = ((𝑦(+g𝐺)𝑧) 𝑥))
5652subgcl 17604 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑦𝑆𝑧𝑆) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
57563expb 1266 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
5819, 57sylan 488 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) ∈ 𝑆)
59 ovres 6800 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑆𝑥𝑌) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
6058, 43, 59syl2anc 693 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐺)𝑧) 𝑥))
612, 52ressplusg 15993 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
6261ad3antlr 767 . . . . . . . . . 10 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (+g𝐺) = (+g𝐻))
6362oveqd 6667 . . . . . . . . 9 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → (𝑦(+g𝐺)𝑧) = (𝑦(+g𝐻)𝑧))
6463oveq1d 6665 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐺)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥))
6555, 60, 643eqtr2rd 2663 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6637, 65syldan 487 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) ∧ (𝑦 ∈ (Base‘𝐻) ∧ 𝑧 ∈ (Base‘𝐻))) → ((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6766ralrimivva 2971 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))
6831, 67jca 554 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑌) → (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
6968ralrimiva 2966 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))
7018, 69jca 554 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥)))))
71 eqid 2622 . . 3 (Base‘𝐻) = (Base‘𝐻)
72 eqid 2622 . . 3 (+g𝐻) = (+g𝐻)
73 eqid 2622 . . 3 (0g𝐻) = (0g𝐻)
7471, 72, 73isga 17724 . 2 (( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌) ↔ ((𝐻 ∈ Grp ∧ 𝑌 ∈ V) ∧ (( ↾ (𝑆 × 𝑌)):((Base‘𝐻) × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐻)( ↾ (𝑆 × 𝑌))𝑥) = 𝑥 ∧ ∀𝑦 ∈ (Base‘𝐻)∀𝑧 ∈ (Base‘𝐻)((𝑦(+g𝐻)𝑧)( ↾ (𝑆 × 𝑌))𝑥) = (𝑦( ↾ (𝑆 × 𝑌))(𝑧( ↾ (𝑆 × 𝑌))𝑥))))))
754, 70, 74sylanbrc 698 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574   × cxp 5112  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  SubGrpcsubg 17588   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-ga 17723
This theorem is referenced by:  sylow3lem5  18046
  Copyright terms: Public domain W3C validator