![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicen | Structured version Visualization version GIF version |
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
gicen.b | ⊢ 𝐵 = (Base‘𝑅) |
gicen.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
gicen | ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 17711 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 3931 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | gicen.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | gicen.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑆) | |
5 | 3, 4 | gimf1o 17705 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
6 | fvex 6201 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
7 | 3, 6 | eqeltri 2697 | . . . . . 6 ⊢ 𝐵 ∈ V |
8 | 7 | f1oen 7976 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
10 | 9 | exlimiv 1858 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
11 | 2, 10 | sylbi 207 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
12 | 1, 11 | sylbi 207 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∅c0 3915 class class class wbr 4653 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ≈ cen 7952 Basecbs 15857 GrpIso cgim 17699 ≃𝑔 cgic 17700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-en 7956 df-ghm 17658 df-gim 17701 df-gic 17702 |
This theorem is referenced by: cyggic 19921 sconnpi1 31221 |
Copyright terms: Public domain | W3C validator |