MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfun Structured version   Visualization version   GIF version

Theorem glbfun 16993
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
glbfun.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
glbfun Fun 𝐺

Proof of Theorem glbfun
Dummy variables 𝑥 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5926 . . . 4 Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2 funres 5929 . . . 4 (Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
4 eqid 2622 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2622 . . . . 5 (le‘𝐾) = (le‘𝐾)
6 glbfun.g . . . . 5 𝐺 = (glb‘𝐾)
7 biid 251 . . . . 5 ((∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
8 id 22 . . . . 5 (𝐾 ∈ V → 𝐾 ∈ V)
94, 5, 6, 7, 8glbfval 16991 . . . 4 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
109funeqd 5910 . . 3 (𝐾 ∈ V → (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})))
113, 10mpbiri 248 . 2 (𝐾 ∈ V → Fun 𝐺)
12 fun0 5954 . . 3 Fun ∅
13 fvprc 6185 . . . . 5 𝐾 ∈ V → (glb‘𝐾) = ∅)
146, 13syl5eq 2668 . . . 4 𝐾 ∈ V → 𝐺 = ∅)
1514funeqd 5910 . . 3 𝐾 ∈ V → (Fun 𝐺 ↔ Fun ∅))
1612, 15mpbiri 248 . 2 𝐾 ∈ V → Fun 𝐺)
1711, 16pm2.61i 176 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  ∃!wreu 2914  Vcvv 3200  c0 3915  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cres 5116  Fun wfun 5882  cfv 5888  crio 6610  Basecbs 15857  lecple 15948  glbcglb 16943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-glb 16975
This theorem is referenced by:  meetfval  17015  meetfval2  17016
  Copyright terms: Public domain W3C validator