![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grponpcan | Structured version Visualization version GIF version |
Description: Cancellation law for group division. (npcan 10290 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grponpcan | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2622 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
3 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
4 | 1, 2, 3 | grpodivval 27389 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺((inv‘𝐺)‘𝐵))) |
5 | 4 | oveq1d 6665 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵)) |
6 | simp1 1061 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ GrpOp) | |
7 | simp2 1062 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
8 | 1, 2 | grpoinvcl 27378 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋) |
9 | 8 | 3adant2 1080 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((inv‘𝐺)‘𝐵) ∈ 𝑋) |
10 | simp3 1063 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
11 | 1 | grpoass 27357 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵))) |
12 | 6, 7, 9, 10, 11 | syl13anc 1328 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵))) |
13 | eqid 2622 | . . . . . . 7 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
14 | 1, 13, 2 | grpolinv 27380 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (((inv‘𝐺)‘𝐵)𝐺𝐵) = (GId‘𝐺)) |
15 | 14 | oveq2d 6666 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺))) |
16 | 15 | 3adant2 1080 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = (𝐴𝐺(GId‘𝐺))) |
17 | 1, 13 | grporid 27371 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
18 | 17 | 3adant3 1081 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
19 | 16, 18 | eqtrd 2656 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(((inv‘𝐺)‘𝐵)𝐺𝐵)) = 𝐴) |
20 | 12, 19 | eqtrd 2656 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺((inv‘𝐺)‘𝐵))𝐺𝐵) = 𝐴) |
21 | 5, 20 | eqtrd 2656 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ran crn 5115 ‘cfv 5888 (class class class)co 6650 GrpOpcgr 27343 GIdcgi 27344 invcgn 27345 /𝑔 cgs 27346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 |
This theorem is referenced by: ablonnncan 27410 grpoeqdivid 33680 ghomdiv 33691 |
Copyright terms: Public domain | W3C validator |