MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponpcan Structured version   Visualization version   Unicode version

Theorem grponpcan 27397
Description: Cancellation law for group division. (npcan 10290 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grponpcan  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )

Proof of Theorem grponpcan
StepHypRef Expression
1 grpdivf.1 . . . 4  |-  X  =  ran  G
2 eqid 2622 . . . 4  |-  ( inv `  G )  =  ( inv `  G )
3 grpdivf.3 . . . 4  |-  D  =  (  /g  `  G
)
41, 2, 3grpodivval 27389 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( ( inv `  G
) `  B )
) )
54oveq1d 6665 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  ( ( A G ( ( inv `  G ) `  B
) ) G B ) )
6 simp1 1061 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
7 simp2 1062 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
81, 2grpoinvcl 27378 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
983adant2 1080 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
10 simp3 1063 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
111grpoass 27357 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  ( ( inv `  G
) `  B )  e.  X  /\  B  e.  X ) )  -> 
( ( A G ( ( inv `  G
) `  B )
) G B )  =  ( A G ( ( ( inv `  G ) `  B
) G B ) ) )
126, 7, 9, 10, 11syl13anc 1328 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G ( ( inv `  G
) `  B )
) G B )  =  ( A G ( ( ( inv `  G ) `  B
) G B ) ) )
13 eqid 2622 . . . . . . 7  |-  (GId `  G )  =  (GId
`  G )
141, 13, 2grpolinv 27380 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
( ( inv `  G
) `  B ) G B )  =  (GId
`  G ) )
1514oveq2d 6666 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( A G ( ( ( inv `  G ) `
 B ) G B ) )  =  ( A G (GId
`  G ) ) )
16153adant2 1080 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( ( ( inv `  G ) `
 B ) G B ) )  =  ( A G (GId
`  G ) ) )
171, 13grporid 27371 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
18173adant3 1081 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G (GId `  G
) )  =  A )
1916, 18eqtrd 2656 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( ( ( inv `  G ) `
 B ) G B ) )  =  A )
2012, 19eqtrd 2656 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A G ( ( inv `  G
) `  B )
) G B )  =  A )
215, 20eqtrd 2656 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345    /g cgs 27346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350
This theorem is referenced by:  ablonnncan  27410  grpoeqdivid  33680  ghomdiv  33691
  Copyright terms: Public domain W3C validator