MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indexfi Structured version   Visualization version   GIF version

Theorem indexfi 8274
Description: If for every element of a finite indexing set 𝐴 there exists a corresponding element of another set 𝐵, then there exists a finite subset of 𝐵 consisting only of those elements which are indexed by 𝐴. Proven without the Axiom of Choice, unlike indexdom 33529. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
indexfi ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐴   𝐵,𝑐,𝑥,𝑦   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑐)

Proof of Theorem indexfi
Dummy variables 𝑓 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6 𝑧𝜑
2 nfsbc1v 3455 . . . . . 6 𝑦[𝑧 / 𝑦]𝜑
3 sbceq1a 3446 . . . . . 6 (𝑦 = 𝑧 → (𝜑[𝑧 / 𝑦]𝜑))
41, 2, 3cbvrex 3168 . . . . 5 (∃𝑦𝐵 𝜑 ↔ ∃𝑧𝐵 [𝑧 / 𝑦]𝜑)
54ralbii 2980 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑)
6 dfsbcq 3437 . . . . 5 (𝑧 = (𝑓𝑥) → ([𝑧 / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
76ac6sfi 8204 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 [𝑧 / 𝑦]𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
85, 7sylan2b 492 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
9 simpll 790 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝐴 ∈ Fin)
10 ffn 6045 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
1110ad2antrl 764 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓 Fn 𝐴)
12 dffn4 6121 . . . . . 6 (𝑓 Fn 𝐴𝑓:𝐴onto→ran 𝑓)
1311, 12sylib 208 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → 𝑓:𝐴onto→ran 𝑓)
14 fofi 8252 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto→ran 𝑓) → ran 𝑓 ∈ Fin)
159, 13, 14syl2anc 693 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓 ∈ Fin)
16 frn 6053 . . . . 5 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
1716ad2antrl 764 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ran 𝑓𝐵)
18 fnfvelrn 6356 . . . . . . . . 9 ((𝑓 Fn 𝐴𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
1910, 18sylan 488 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ ran 𝑓)
20 rspesbca 3520 . . . . . . . . 9 (((𝑓𝑥) ∈ ran 𝑓[(𝑓𝑥) / 𝑦]𝜑) → ∃𝑦 ∈ ran 𝑓𝜑)
2120ex 450 . . . . . . . 8 ((𝑓𝑥) ∈ ran 𝑓 → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2219, 21syl 17 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → ([(𝑓𝑥) / 𝑦]𝜑 → ∃𝑦 ∈ ran 𝑓𝜑))
2322ralimdva 2962 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
2423imp 445 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
2524adantl 482 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑)
26 simpr 477 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → 𝑤𝐴)
27 simprr 796 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
28 nfv 1843 . . . . . . . . . . 11 𝑤[(𝑓𝑥) / 𝑦]𝜑
29 nfsbc1v 3455 . . . . . . . . . . 11 𝑥[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑
30 fveq2 6191 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑓𝑥) = (𝑓𝑤))
3130sbceq1d 3440 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
32 sbceq1a 3446 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ([(𝑓𝑤) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3331, 32bitrd 268 . . . . . . . . . . 11 (𝑥 = 𝑤 → ([(𝑓𝑥) / 𝑦]𝜑[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑))
3428, 29, 33cbvral 3167 . . . . . . . . . 10 (∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑 ↔ ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3527, 34sylib 208 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴 [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
3635r19.21bi 2932 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → [𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑)
37 rspesbca 3520 . . . . . . . 8 ((𝑤𝐴[𝑤 / 𝑥][(𝑓𝑤) / 𝑦]𝜑) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3826, 36, 37syl2anc 693 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) ∧ 𝑤𝐴) → ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
3938ralrimiva 2966 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑)
40 dfsbcq 3437 . . . . . . . . 9 (𝑧 = (𝑓𝑤) → ([𝑧 / 𝑦]𝜑[(𝑓𝑤) / 𝑦]𝜑))
4140rexbidv 3052 . . . . . . . 8 (𝑧 = (𝑓𝑤) → (∃𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4241ralrn 6362 . . . . . . 7 (𝑓 Fn 𝐴 → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4311, 42syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → (∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑 ↔ ∀𝑤𝐴𝑥𝐴 [(𝑓𝑤) / 𝑦]𝜑))
4439, 43mpbird 247 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
45 nfv 1843 . . . . . 6 𝑧𝑥𝐴 𝜑
46 nfcv 2764 . . . . . . 7 𝑦𝐴
4746, 2nfrex 3007 . . . . . 6 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
483rexbidv 3052 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
4945, 47, 48cbvral 3167 . . . . 5 (∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑 ↔ ∀𝑧 ∈ ran 𝑓𝑥𝐴 [𝑧 / 𝑦]𝜑)
5044, 49sylibr 224 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)
51 sseq1 3626 . . . . . 6 (𝑐 = ran 𝑓 → (𝑐𝐵 ↔ ran 𝑓𝐵))
52 rexeq 3139 . . . . . . 7 (𝑐 = ran 𝑓 → (∃𝑦𝑐 𝜑 ↔ ∃𝑦 ∈ ran 𝑓𝜑))
5352ralbidv 2986 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑥𝐴𝑦𝑐 𝜑 ↔ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑))
54 raleq 3138 . . . . . 6 (𝑐 = ran 𝑓 → (∀𝑦𝑐𝑥𝐴 𝜑 ↔ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑))
5551, 53, 543anbi123d 1399 . . . . 5 (𝑐 = ran 𝑓 → ((𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑) ↔ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)))
5655rspcev 3309 . . . 4 ((ran 𝑓 ∈ Fin ∧ (ran 𝑓𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ran 𝑓𝜑 ∧ ∀𝑦 ∈ ran 𝑓𝑥𝐴 𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
5715, 17, 25, 50, 56syl13anc 1328 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
588, 57exlimddv 1863 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
59583adant2 1080 1 ((𝐴 ∈ Fin ∧ 𝐵𝑀 ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑐 ∈ Fin (𝑐𝐵 ∧ ∀𝑥𝐴𝑦𝑐 𝜑 ∧ ∀𝑦𝑐𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  [wsbc 3435  wss 3574  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  filbcmb  33535
  Copyright terms: Public domain W3C validator