| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indexfi | Structured version Visualization version Unicode version | ||
| Description: If for every element of a
finite indexing set |
| Ref | Expression |
|---|---|
| indexfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . . 6
| |
| 2 | nfsbc1v 3455 |
. . . . . 6
| |
| 3 | sbceq1a 3446 |
. . . . . 6
| |
| 4 | 1, 2, 3 | cbvrex 3168 |
. . . . 5
|
| 5 | 4 | ralbii 2980 |
. . . 4
|
| 6 | dfsbcq 3437 |
. . . . 5
| |
| 7 | 6 | ac6sfi 8204 |
. . . 4
|
| 8 | 5, 7 | sylan2b 492 |
. . 3
|
| 9 | simpll 790 |
. . . . 5
| |
| 10 | ffn 6045 |
. . . . . . 7
| |
| 11 | 10 | ad2antrl 764 |
. . . . . 6
|
| 12 | dffn4 6121 |
. . . . . 6
| |
| 13 | 11, 12 | sylib 208 |
. . . . 5
|
| 14 | fofi 8252 |
. . . . 5
| |
| 15 | 9, 13, 14 | syl2anc 693 |
. . . 4
|
| 16 | frn 6053 |
. . . . 5
| |
| 17 | 16 | ad2antrl 764 |
. . . 4
|
| 18 | fnfvelrn 6356 |
. . . . . . . . 9
| |
| 19 | 10, 18 | sylan 488 |
. . . . . . . 8
|
| 20 | rspesbca 3520 |
. . . . . . . . 9
| |
| 21 | 20 | ex 450 |
. . . . . . . 8
|
| 22 | 19, 21 | syl 17 |
. . . . . . 7
|
| 23 | 22 | ralimdva 2962 |
. . . . . 6
|
| 24 | 23 | imp 445 |
. . . . 5
|
| 25 | 24 | adantl 482 |
. . . 4
|
| 26 | simpr 477 |
. . . . . . . 8
| |
| 27 | simprr 796 |
. . . . . . . . . 10
| |
| 28 | nfv 1843 |
. . . . . . . . . . 11
| |
| 29 | nfsbc1v 3455 |
. . . . . . . . . . 11
| |
| 30 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 31 | 30 | sbceq1d 3440 |
. . . . . . . . . . . 12
|
| 32 | sbceq1a 3446 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | bitrd 268 |
. . . . . . . . . . 11
|
| 34 | 28, 29, 33 | cbvral 3167 |
. . . . . . . . . 10
|
| 35 | 27, 34 | sylib 208 |
. . . . . . . . 9
|
| 36 | 35 | r19.21bi 2932 |
. . . . . . . 8
|
| 37 | rspesbca 3520 |
. . . . . . . 8
| |
| 38 | 26, 36, 37 | syl2anc 693 |
. . . . . . 7
|
| 39 | 38 | ralrimiva 2966 |
. . . . . 6
|
| 40 | dfsbcq 3437 |
. . . . . . . . 9
| |
| 41 | 40 | rexbidv 3052 |
. . . . . . . 8
|
| 42 | 41 | ralrn 6362 |
. . . . . . 7
|
| 43 | 11, 42 | syl 17 |
. . . . . 6
|
| 44 | 39, 43 | mpbird 247 |
. . . . 5
|
| 45 | nfv 1843 |
. . . . . 6
| |
| 46 | nfcv 2764 |
. . . . . . 7
| |
| 47 | 46, 2 | nfrex 3007 |
. . . . . 6
|
| 48 | 3 | rexbidv 3052 |
. . . . . 6
|
| 49 | 45, 47, 48 | cbvral 3167 |
. . . . 5
|
| 50 | 44, 49 | sylibr 224 |
. . . 4
|
| 51 | sseq1 3626 |
. . . . . 6
| |
| 52 | rexeq 3139 |
. . . . . . 7
| |
| 53 | 52 | ralbidv 2986 |
. . . . . 6
|
| 54 | raleq 3138 |
. . . . . 6
| |
| 55 | 51, 53, 54 | 3anbi123d 1399 |
. . . . 5
|
| 56 | 55 | rspcev 3309 |
. . . 4
|
| 57 | 15, 17, 25, 50, 56 | syl13anc 1328 |
. . 3
|
| 58 | 8, 57 | exlimddv 1863 |
. 2
|
| 59 | 58 | 3adant2 1080 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 |
| This theorem is referenced by: filbcmb 33535 |
| Copyright terms: Public domain | W3C validator |