MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fofi Structured version   Visualization version   GIF version

Theorem fofi 8252
Description: If a function has a finite domain, its range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.)
Assertion
Ref Expression
fofi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)

Proof of Theorem fofi
StepHypRef Expression
1 fodomfi 8239 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
2 domfi 8181 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
31, 2syldan 487 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990   class class class wbr 4653  ontowfo 5886  cdom 7953  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959
This theorem is referenced by:  f1fi  8253  imafi  8259  f1opwfi  8270  indexfi  8274  intrnfi  8322  infpwfien  8885  ttukeylem6  9336  fseqsupcl  12776  fiinfnf1o  13138  vdwlem6  15690  0ram2  15725  0ramcl  15727  mplsubrglem  19439  tgcmp  21204  hauscmplem  21209  1stcfb  21248  comppfsc  21335  1stckgenlem  21356  ptcnplem  21424  txtube  21443  txcmplem1  21444  tmdgsum2  21900  tsmsf1o  21948  tsmsxplem1  21956  ovolicc2lem4  23288  i1fadd  23462  i1fmul  23463  itg1addlem4  23466  i1fmulc  23470  mbfi1fseqlem4  23485  limciun  23658  edgusgrnbfin  26275  erdszelem2  31174  mvrsfpw  31403  itg2addnclem2  33462  istotbnd3  33570  sstotbnd  33574  prdsbnd  33592  cntotbnd  33595  heiborlem1  33610  heibor  33620  lmhmfgima  37654
  Copyright terms: Public domain W3C validator