| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lemd | Structured version Visualization version GIF version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
| inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
| inf3lem.3 | ⊢ 𝐴 ∈ V |
| inf3lem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| inf3lemd | ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = (𝐹‘∅)) | |
| 2 | inf3lem.1 | . . . . . 6 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 3 | inf3lem.2 | . . . . . 6 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
| 4 | inf3lem.3 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 5 | inf3lem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 2, 3, 4, 5 | inf3lemb 8522 | . . . . 5 ⊢ (𝐹‘∅) = ∅ |
| 7 | 1, 6 | syl6eq 2672 | . . . 4 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) = ∅) |
| 8 | 0ss 3972 | . . . 4 ⊢ ∅ ⊆ 𝑥 | |
| 9 | 7, 8 | syl6eqss 3655 | . . 3 ⊢ (𝐴 = ∅ → (𝐹‘𝐴) ⊆ 𝑥) |
| 10 | 9 | a1d 25 | . 2 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 11 | nnsuc 7082 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣) | |
| 12 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑣 ∈ V | |
| 13 | 2, 3, 12, 5 | inf3lemc 8523 | . . . . . . . . 9 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹‘𝑣))) |
| 14 | 13 | eleq2d 2687 | . . . . . . . 8 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹‘𝑣)))) |
| 15 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑢 ∈ V | |
| 16 | fvex 6201 | . . . . . . . . . 10 ⊢ (𝐹‘𝑣) ∈ V | |
| 17 | 2, 3, 15, 16 | inf3lema 8521 | . . . . . . . . 9 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) ↔ (𝑢 ∈ 𝑥 ∧ (𝑢 ∩ 𝑥) ⊆ (𝐹‘𝑣))) |
| 18 | 17 | simplbi 476 | . . . . . . . 8 ⊢ (𝑢 ∈ (𝐺‘(𝐹‘𝑣)) → 𝑢 ∈ 𝑥) |
| 19 | 14, 18 | syl6bi 243 | . . . . . . 7 ⊢ (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢 ∈ 𝑥)) |
| 20 | 19 | ssrdv 3609 | . . . . . 6 ⊢ (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥) |
| 21 | fveq2 6191 | . . . . . . 7 ⊢ (𝐴 = suc 𝑣 → (𝐹‘𝐴) = (𝐹‘suc 𝑣)) | |
| 22 | 21 | sseq1d 3632 | . . . . . 6 ⊢ (𝐴 = suc 𝑣 → ((𝐹‘𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥)) |
| 23 | 20, 22 | syl5ibrcom 237 | . . . . 5 ⊢ (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥)) |
| 24 | 23 | rexlimiv 3027 | . . . 4 ⊢ (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹‘𝐴) ⊆ 𝑥) |
| 25 | 11, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹‘𝐴) ⊆ 𝑥) |
| 26 | 25 | expcom 451 | . 2 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥)) |
| 27 | 10, 26 | pm2.61ine 2877 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∃wrex 2913 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ↦ cmpt 4729 ↾ cres 5116 suc csuc 5725 ‘cfv 5888 ωcom 7065 reccrdg 7505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: inf3lem2 8526 inf3lem3 8527 inf3lem6 8530 |
| Copyright terms: Public domain | W3C validator |