MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1w Structured version   Visualization version   GIF version

Theorem initoeu1w 16662
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1w (𝜑𝐴( ≃𝑐𝐶)𝐵)

Proof of Theorem initoeu1w
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
2 initoeu1.a . . . 4 (𝜑𝐴 ∈ (InitO‘𝐶))
3 initoeu1.b . . . 4 (𝜑𝐵 ∈ (InitO‘𝐶))
41, 2, 3initoeu1 16661 . . 3 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5 euex 2494 . . 3 (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
64, 5syl 17 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
7 eqid 2622 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
8 eqid 2622 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 initoo 16657 . . . 4 (𝐶 ∈ Cat → (𝐴 ∈ (InitO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
101, 2, 9sylc 65 . . 3 (𝜑𝐴 ∈ (Base‘𝐶))
11 initoo 16657 . . . 4 (𝐶 ∈ Cat → (𝐵 ∈ (InitO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
121, 3, 11sylc 65 . . 3 (𝜑𝐵 ∈ (Base‘𝐶))
137, 8, 1, 10, 12cic 16459 . 2 (𝜑 → (𝐴( ≃𝑐𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
146, 13mpbird 247 1 (𝜑𝐴( ≃𝑐𝐶)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1704  wcel 1990  ∃!weu 2470   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  Catccat 16325  Isociso 16406  𝑐 ccic 16455  InitOcinito 16638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409  df-cic 16456  df-inito 16641
This theorem is referenced by:  nzerooringczr  42072
  Copyright terms: Public domain W3C validator