MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem0 Structured version   Visualization version   GIF version

Theorem initoeu2lem0 16663
Description: Lemma 0 for initoeu2 16666. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem0 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))

Proof of Theorem initoeu2lem0
StepHypRef Expression
1 3simpa 1058 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))))
2 simp3 1063 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
32eqcomd 2628 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
4 initoeu2lem.x . . 3 𝑋 = (Base‘𝐶)
5 eqid 2622 . . 3 (Inv‘𝐶) = (Inv‘𝐶)
6 initoeu1.c . . . . 5 (𝜑𝐶 ∈ Cat)
76adantr 481 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
87adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐶 ∈ Cat)
9 simpr1 1067 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
109adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐴𝑋)
11 simpr2 1068 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
1211adantr 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐵𝑋)
13 simplr3 1105 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐷𝑋)
14 initoeu2lem.i . . . . . . . 8 𝐼 = (Iso‘𝐶)
1514oveqi 6663 . . . . . . 7 (𝐵𝐼𝐴) = (𝐵(Iso‘𝐶)𝐴)
1615eleq2i 2693 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) ↔ 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1716biimpi 206 . . . . 5 (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
18173ad2ant1 1082 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1918adantl 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
20 initoeu2lem.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
2120oveqi 6663 . . . . . . 7 (𝐵𝐻𝐷) = (𝐵(Hom ‘𝐶)𝐷)
2221eleq2i 2693 . . . . . 6 (𝐺 ∈ (𝐵𝐻𝐷) ↔ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2322biimpi 206 . . . . 5 (𝐺 ∈ (𝐵𝐻𝐷) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
24233ad2ant3 1084 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2524adantl 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
26 eqid 2622 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
27 initoeu2lem.o . . . 4 = (comp‘𝐶)
284, 26, 14, 7, 11, 9isohom 16436 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐵𝐼𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
2928sseld 3602 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3029com12 32 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
31303ad2ant1 1082 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3231impcom 446 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))
3320oveqi 6663 . . . . . . . 8 (𝐴𝐻𝐷) = (𝐴(Hom ‘𝐶)𝐷)
3433eleq2i 2693 . . . . . . 7 (𝐹 ∈ (𝐴𝐻𝐷) ↔ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3534biimpi 206 . . . . . 6 (𝐹 ∈ (𝐴𝐻𝐷) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
36353ad2ant2 1083 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3736adantl 482 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
384, 26, 27, 8, 12, 10, 13, 32, 37catcocl 16346 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵(Hom ‘𝐶)𝐷))
39 eqid 2622 . . 3 ((𝐵(Inv‘𝐶)𝐴)‘𝐾) = ((𝐵(Inv‘𝐶)𝐴)‘𝐾)
4027oveqi 6663 . . 3 (⟨𝐴, 𝐵 𝐷) = (⟨𝐴, 𝐵⟩(comp‘𝐶)𝐷)
414, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40rcaninv 16454 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
421, 3, 41sylc 65 1 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cop 4183  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Invcinv 16405  Isociso 16406  InitOcinito 16638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  initoeu2lem1  16664
  Copyright terms: Public domain W3C validator