| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > initoeu2lem0 | Structured version Visualization version Unicode version | ||
| Description: Lemma 0 for initoeu2 16666. (Contributed by AV, 9-Apr-2020.) |
| Ref | Expression |
|---|---|
| initoeu1.c |
|
| initoeu1.a |
|
| initoeu2lem.x |
|
| initoeu2lem.h |
|
| initoeu2lem.i |
|
| initoeu2lem.o |
|
| Ref | Expression |
|---|---|
| initoeu2lem0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1058 |
. 2
| |
| 2 | simp3 1063 |
. . 3
| |
| 3 | 2 | eqcomd 2628 |
. 2
|
| 4 | initoeu2lem.x |
. . 3
| |
| 5 | eqid 2622 |
. . 3
| |
| 6 | initoeu1.c |
. . . . 5
| |
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | 7 | adantr 481 |
. . 3
|
| 9 | simpr1 1067 |
. . . 4
| |
| 10 | 9 | adantr 481 |
. . 3
|
| 11 | simpr2 1068 |
. . . 4
| |
| 12 | 11 | adantr 481 |
. . 3
|
| 13 | simplr3 1105 |
. . 3
| |
| 14 | initoeu2lem.i |
. . . . . . . 8
| |
| 15 | 14 | oveqi 6663 |
. . . . . . 7
|
| 16 | 15 | eleq2i 2693 |
. . . . . 6
|
| 17 | 16 | biimpi 206 |
. . . . 5
|
| 18 | 17 | 3ad2ant1 1082 |
. . . 4
|
| 19 | 18 | adantl 482 |
. . 3
|
| 20 | initoeu2lem.h |
. . . . . . . 8
| |
| 21 | 20 | oveqi 6663 |
. . . . . . 7
|
| 22 | 21 | eleq2i 2693 |
. . . . . 6
|
| 23 | 22 | biimpi 206 |
. . . . 5
|
| 24 | 23 | 3ad2ant3 1084 |
. . . 4
|
| 25 | 24 | adantl 482 |
. . 3
|
| 26 | eqid 2622 |
. . . 4
| |
| 27 | initoeu2lem.o |
. . . 4
| |
| 28 | 4, 26, 14, 7, 11, 9 | isohom 16436 |
. . . . . . . 8
|
| 29 | 28 | sseld 3602 |
. . . . . . 7
|
| 30 | 29 | com12 32 |
. . . . . 6
|
| 31 | 30 | 3ad2ant1 1082 |
. . . . 5
|
| 32 | 31 | impcom 446 |
. . . 4
|
| 33 | 20 | oveqi 6663 |
. . . . . . . 8
|
| 34 | 33 | eleq2i 2693 |
. . . . . . 7
|
| 35 | 34 | biimpi 206 |
. . . . . 6
|
| 36 | 35 | 3ad2ant2 1083 |
. . . . 5
|
| 37 | 36 | adantl 482 |
. . . 4
|
| 38 | 4, 26, 27, 8, 12, 10, 13, 32, 37 | catcocl 16346 |
. . 3
|
| 39 | eqid 2622 |
. . 3
| |
| 40 | 27 | oveqi 6663 |
. . 3
|
| 41 | 4, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40 | rcaninv 16454 |
. 2
|
| 42 | 1, 3, 41 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-cat 16329 df-cid 16330 df-sect 16407 df-inv 16408 df-iso 16409 |
| This theorem is referenced by: initoeu2lem1 16664 |
| Copyright terms: Public domain | W3C validator |