![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isohom | Structured version Visualization version GIF version |
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
isohom.b | ⊢ 𝐵 = (Base‘𝐶) |
isohom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isohom.i | ⊢ 𝐼 = (Iso‘𝐶) |
isohom.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isohom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isohom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
isohom | ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isohom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2622 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | isohom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | isohom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | isohom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | isohom.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | isoval 16425 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
8 | isohom.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | invss 16421 | . . . 4 ⊢ (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
10 | dmss 5323 | . . . 4 ⊢ ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
12 | 7, 11 | eqsstrd 3639 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))) |
13 | dmxpss 5565 | . 2 ⊢ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌) | |
14 | 12, 13 | syl6ss 3615 | 1 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 × cxp 5112 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 Catccat 16325 Invcinv 16405 Isociso 16406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-sect 16407 df-inv 16408 df-iso 16409 |
This theorem is referenced by: invisoinvl 16450 invcoisoid 16452 isocoinvid 16453 rcaninv 16454 ffthiso 16589 fuciso 16635 initoeu1 16661 initoeu2lem0 16663 initoeu2lem1 16664 initoeu2 16666 termoeu1 16668 nzerooringczr 42072 |
Copyright terms: Public domain | W3C validator |