![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inpreima | Structured version Visualization version GIF version |
Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.) |
Ref | Expression |
---|---|
inpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvcnv 5956 | . 2 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
2 | imain 5974 | . 2 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∩ cin 3573 ◡ccnv 5113 “ cima 5117 Fun wfun 5882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 |
This theorem is referenced by: fimacnvinrn 6348 frnsuppeq 7307 ofco2 20257 cnrest2 21090 cnhaus 21158 kgencn3 21361 qtoptop2 21502 basqtop 21514 ismbfd 23407 mbfimaopn2 23424 i1fima 23445 i1fima2 23446 i1fd 23448 disjpreima 29397 sspreima 29447 smfco 41009 |
Copyright terms: Public domain | W3C validator |