| Step | Hyp | Ref
| Expression |
| 1 | | simpr1 1067 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → Fun 𝐻) |
| 2 | | fvimacnvi 6331 |
. . . 4
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻‘𝑥) ∈ (dom 𝐹 ∩ dom 𝐺)) |
| 3 | 1, 2 | sylan 488 |
. . 3
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻‘𝑥) ∈ (dom 𝐹 ∩ dom 𝐺)) |
| 4 | | funfn 5918 |
. . . . . . 7
⊢ (Fun
𝐻 ↔ 𝐻 Fn dom 𝐻) |
| 5 | 1, 4 | sylib 208 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → 𝐻 Fn dom 𝐻) |
| 6 | | dffn5 6241 |
. . . . . 6
⊢ (𝐻 Fn dom 𝐻 ↔ 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥))) |
| 7 | 5, 6 | sylib 208 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥))) |
| 8 | 7 | reseq1d 5395 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
| 9 | | cnvimass 5485 |
. . . . 5
⊢ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 |
| 10 | | resmpt 5449 |
. . . . 5
⊢ ((◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥))) |
| 11 | 9, 10 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥)) |
| 12 | 8, 11 | syl6eq 2672 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥))) |
| 13 | | offval3 7162 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘𝑓
𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
| 14 | 13 | adantr 481 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
| 15 | | fveq2 6191 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐻‘𝑥))) |
| 16 | | fveq2 6191 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐺‘𝑦) = (𝐺‘(𝐻‘𝑥))) |
| 17 | 15, 16 | oveq12d 6668 |
. . 3
⊢ (𝑦 = (𝐻‘𝑥) → ((𝐹‘𝑦)𝑅(𝐺‘𝑦)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
| 18 | 3, 12, 14, 17 | fmptco 6396 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 19 | | ovex 6678 |
. . . . . . . 8
⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V |
| 20 | 19 | rgenw 2924 |
. . . . . . 7
⊢
∀𝑥 ∈
(dom 𝐹 ∩ dom 𝐺)((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V |
| 21 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 22 | 21 | fnmpt 6020 |
. . . . . . 7
⊢
(∀𝑥 ∈
(dom 𝐹 ∩ dom 𝐺)((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)) |
| 23 | 20, 22 | mp1i 13 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)) |
| 24 | | offval3 7162 |
. . . . . . . 8
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘𝑓
𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 25 | 24 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 26 | 25 | fneq1d 5981 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))) |
| 27 | 23, 26 | mpbird 247 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘𝑓 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺)) |
| 28 | | fndm 5990 |
. . . . 5
⊢ ((𝐹 ∘𝑓
𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) → dom (𝐹 ∘𝑓 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺)) |
| 29 | 27, 28 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → dom (𝐹 ∘𝑓 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺)) |
| 30 | | eqimss 3657 |
. . . 4
⊢ (dom
(𝐹
∘𝑓 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹 ∘𝑓 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)) |
| 31 | | cores2 5648 |
. . . 4
⊢ (dom
(𝐹
∘𝑓 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻)) |
| 32 | 29, 30, 31 | 3syl 18 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻)) |
| 33 | | funcnvres2 5969 |
. . . . 5
⊢ (Fun
𝐻 → ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
| 34 | 1, 33 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
| 35 | 34 | coeq2d 5284 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))))) |
| 36 | 32, 35 | eqtr3d 2658 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘𝑓 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))))) |
| 37 | | simpr2 1068 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘ 𝐻) ∈ V) |
| 38 | | simpr3 1069 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐺 ∘ 𝐻) ∈ V) |
| 39 | | offval3 7162 |
. . . 4
⊢ (((𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V) → ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)))) |
| 40 | 37, 38, 39 | syl2anc 693 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)))) |
| 41 | | inpreima 6342 |
. . . . . 6
⊢ (Fun
𝐻 → (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺))) |
| 42 | 1, 41 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺))) |
| 43 | | dmco 5643 |
. . . . . 6
⊢ dom
(𝐹 ∘ 𝐻) = (◡𝐻 “ dom 𝐹) |
| 44 | | dmco 5643 |
. . . . . 6
⊢ dom
(𝐺 ∘ 𝐻) = (◡𝐻 “ dom 𝐺) |
| 45 | 43, 44 | ineq12i 3812 |
. . . . 5
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺)) |
| 46 | 42, 45 | syl6reqr 2675 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) = (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) |
| 47 | | simplr1 1103 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → Fun 𝐻) |
| 48 | | inss2 3834 |
. . . . . . . . 9
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom (𝐺 ∘ 𝐻) |
| 49 | | dmcoss 5385 |
. . . . . . . . 9
⊢ dom
(𝐺 ∘ 𝐻) ⊆ dom 𝐻 |
| 50 | 48, 49 | sstri 3612 |
. . . . . . . 8
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻 |
| 51 | 50 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻) |
| 52 | 51 | sselda 3603 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → 𝑥 ∈ dom 𝐻) |
| 53 | | fvco 6274 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ dom 𝐻) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 54 | 47, 52, 53 | syl2anc 693 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 55 | | inss1 3833 |
. . . . . . . . 9
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom (𝐹 ∘ 𝐻) |
| 56 | | dmcoss 5385 |
. . . . . . . . 9
⊢ dom
(𝐹 ∘ 𝐻) ⊆ dom 𝐻 |
| 57 | 55, 56 | sstri 3612 |
. . . . . . . 8
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻 |
| 58 | 57 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻) |
| 59 | 58 | sselda 3603 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → 𝑥 ∈ dom 𝐻) |
| 60 | | fvco 6274 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ dom 𝐻) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
| 61 | 47, 59, 60 | syl2anc 693 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
| 62 | 54, 61 | oveq12d 6668 |
. . . 4
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
| 63 | 46, 62 | mpteq12dva 4732 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 64 | 40, 63 | eqtrd 2656 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 65 | 18, 36, 64 | 3eqtr4d 2666 |
1
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘𝑓 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘𝑓 𝑅(𝐺 ∘ 𝐻))) |