MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fima2 Structured version   Visualization version   GIF version

Theorem i1fima2 23446
Description: Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1fima2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)

Proof of Theorem i1fima2
StepHypRef Expression
1 i1fima 23445 . . . 4 (𝐹 ∈ dom ∫1 → (𝐹𝐴) ∈ dom vol)
21adantr 481 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ∈ dom vol)
3 mblvol 23298 . . 3 ((𝐹𝐴) ∈ dom vol → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
42, 3syl 17 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) = (vol*‘(𝐹𝐴)))
5 i1ff 23443 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
65adantr 481 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → 𝐹:ℝ⟶ℝ)
7 ffun 6048 . . . . . 6 (𝐹:ℝ⟶ℝ → Fun 𝐹)
8 inpreima 6342 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
96, 7, 83syl 18 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
10 cnvimass 5485 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
11 cnvimarndm 5486 . . . . . . 7 (𝐹 “ ran 𝐹) = dom 𝐹
1210, 11sseqtr4i 3638 . . . . . 6 (𝐹𝐴) ⊆ (𝐹 “ ran 𝐹)
13 df-ss 3588 . . . . . 6 ((𝐹𝐴) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴))
1412, 13mpbi 220 . . . . 5 ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝐴)
159, 14syl6req 2673 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
16 inss1 3833 . . . . . . . . . 10 (𝐴 ∩ ran 𝐹) ⊆ 𝐴
1716sseli 3599 . . . . . . . . 9 (0 ∈ (𝐴 ∩ ran 𝐹) → 0 ∈ 𝐴)
1817con3i 150 . . . . . . . 8 (¬ 0 ∈ 𝐴 → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
1918adantl 482 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
20 disjsn 4246 . . . . . . 7 (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝐴 ∩ ran 𝐹))
2119, 20sylibr 224 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → ((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅)
22 inss2 3834 . . . . . . . . 9 (𝐴 ∩ ran 𝐹) ⊆ ran 𝐹
23 frn 6053 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
245, 23syl 17 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
2522, 24syl5ss 3614 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
2625adantr 481 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ ℝ)
27 reldisj 4020 . . . . . . 7 ((𝐴 ∩ ran 𝐹) ⊆ ℝ → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2826, 27syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (((𝐴 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0})))
2921, 28mpbid 222 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}))
30 imass2 5501 . . . . 5 ((𝐴 ∩ ran 𝐹) ⊆ (ℝ ∖ {0}) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
3129, 30syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (𝐴 ∩ ran 𝐹)) ⊆ (𝐹 “ (ℝ ∖ {0})))
3215, 31eqsstrd 3639 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})))
33 i1fima 23445 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
3433adantr 481 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ∈ dom vol)
35 mblss 23299 . . . 4 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
3634, 35syl 17 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ)
37 mblvol 23298 . . . . 5 ((𝐹 “ (ℝ ∖ {0})) ∈ dom vol → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
3834, 37syl 17 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) = (vol*‘(𝐹 “ (ℝ ∖ {0}))))
39 isi1f 23441 . . . . . . 7 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
4039simprbi 480 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
4140simp3d 1075 . . . . 5 (𝐹 ∈ dom ∫1 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4241adantr 481 . . . 4 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
4338, 42eqeltrrd 2702 . . 3 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
44 ovolsscl 23254 . . 3 (((𝐹𝐴) ⊆ (𝐹 “ (ℝ ∖ {0})) ∧ (𝐹 “ (ℝ ∖ {0})) ⊆ ℝ ∧ (vol*‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ) → (vol*‘(𝐹𝐴)) ∈ ℝ)
4532, 36, 43, 44syl3anc 1326 . 2 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol*‘(𝐹𝐴)) ∈ ℝ)
464, 45eqeltrd 2701 1 ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(𝐹𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cdif 3571  cin 3573  wss 3574  c0 3915  {csn 4177  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  Fincfn 7955  cr 9935  0cc0 9936  vol*covol 23231  volcvol 23232  MblFncmbf 23383  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389
This theorem is referenced by:  i1fima2sn  23447  i1f0rn  23449  itg2addnclem  33461  itg2addnclem2  33462  ftc1anclem3  33487
  Copyright terms: Public domain W3C validator