| Step | Hyp | Ref
| Expression |
| 1 | | ioof 12271 |
. . . . 5
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
| 2 | | ffn 6045 |
. . . . 5
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
| 3 | | ovelrn 6810 |
. . . . 5
⊢ ((,) Fn
(ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*
∃𝑦 ∈
ℝ* 𝑧 =
(𝑥(,)𝑦))) |
| 4 | 1, 2, 3 | mp2b 10 |
. . . 4
⊢ (𝑧 ∈ ran (,) ↔
∃𝑥 ∈
ℝ* ∃𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)) |
| 5 | | simprl 794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑥 ∈
ℝ*) |
| 6 | | pnfxr 10092 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
| 7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ +∞ ∈ ℝ*) |
| 8 | | mnfxr 10096 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ -∞ ∈ ℝ*) |
| 10 | | simprr 796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑦 ∈
ℝ*) |
| 11 | | iooin 12209 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ*
∧ +∞ ∈ ℝ*) ∧ (-∞ ∈
ℝ* ∧ 𝑦
∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦))) |
| 12 | 5, 7, 9, 10, 11 | syl22anc 1327 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((𝑥(,)+∞)
∩ (-∞(,)𝑦)) =
(if(𝑥 ≤ -∞,
-∞, 𝑥)(,)if(+∞
≤ 𝑦, +∞, 𝑦))) |
| 13 | | mnfle 11969 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ -∞ ≤ 𝑥) |
| 14 | | xrleid 11983 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ*
→ 𝑥 ≤ 𝑥) |
| 15 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ (-∞
= if(𝑥 ≤ -∞,
-∞, 𝑥) →
(-∞ ≤ 𝑥 ↔
if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥)) |
| 16 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥 ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)) |
| 17 | 15, 16 | ifboth 4124 |
. . . . . . . . . . . . . 14
⊢
((-∞ ≤ 𝑥
∧ 𝑥 ≤ 𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥) |
| 18 | 13, 14, 17 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ*
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥) |
| 19 | 18 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ≤ 𝑥) |
| 20 | | xrmax1 12006 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)) |
| 21 | 5, 8, 20 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)) |
| 22 | | ifcl 4130 |
. . . . . . . . . . . . . 14
⊢
((-∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈
ℝ*) |
| 23 | 8, 5, 22 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) ∈
ℝ*) |
| 24 | | xrletri3 11985 |
. . . . . . . . . . . . 13
⊢
((if(𝑥 ≤
-∞, -∞, 𝑥)
∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥 ∧ 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)))) |
| 25 | 23, 5, 24 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (if(𝑥 ≤ -∞,
-∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥 ∧ 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥)))) |
| 26 | 19, 21, 25 | mpbir2and 957 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(𝑥 ≤ -∞,
-∞, 𝑥) = 𝑥) |
| 27 | | xrmin2 12009 |
. . . . . . . . . . . . 13
⊢
((+∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) →
if(+∞ ≤ 𝑦,
+∞, 𝑦) ≤ 𝑦) |
| 28 | 6, 10, 27 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) ≤ 𝑦) |
| 29 | | pnfge 11964 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) |
| 30 | | xrleid 11983 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤ 𝑦) |
| 31 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢ (+∞
= if(+∞ ≤ 𝑦,
+∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))) |
| 32 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ 𝑦 ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))) |
| 33 | 31, 32 | ifboth 4124 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≤ +∞ ∧ 𝑦 ≤ 𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)) |
| 34 | 29, 30, 33 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤ if(+∞
≤ 𝑦, +∞, 𝑦)) |
| 35 | 34 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝑦 ≤ if(+∞
≤ 𝑦, +∞, 𝑦)) |
| 36 | | ifcl 4130 |
. . . . . . . . . . . . . 14
⊢
((+∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) →
if(+∞ ≤ 𝑦,
+∞, 𝑦) ∈
ℝ*) |
| 37 | 6, 10, 36 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) ∈
ℝ*) |
| 38 | | xrletri3 11985 |
. . . . . . . . . . . . 13
⊢
((if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ* ∧ 𝑦 ∈ ℝ*)
→ (if(+∞ ≤ 𝑦,
+∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦 ∧ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))) |
| 39 | 37, 10, 38 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (if(+∞ ≤ 𝑦,
+∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦 ∧ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))) |
| 40 | 28, 35, 39 | mpbir2and 957 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ if(+∞ ≤ 𝑦,
+∞, 𝑦) = 𝑦) |
| 41 | 26, 40 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (if(𝑥 ≤ -∞,
-∞, 𝑥)(,)if(+∞
≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦)) |
| 42 | 12, 41 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((𝑥(,)+∞)
∩ (-∞(,)𝑦)) =
(𝑥(,)𝑦)) |
| 43 | 42 | imaeq2d 5466 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (◡𝐹 “ (𝑥(,)𝑦))) |
| 44 | | ismbfd.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 45 | 44 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ 𝐹:𝐴⟶ℝ) |
| 46 | | ffun 6048 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ Fun 𝐹) |
| 48 | | inpreima 6342 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
| 50 | 43, 49 | eqtr3d 2658 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)𝑦)) = ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦)))) |
| 51 | | ismbfd.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
| 52 | 51 | adantrr 753 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
| 53 | | ismbfd.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 54 | 53 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ℝ* (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 55 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦)) |
| 56 | 55 | imaeq2d 5466 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ (-∞(,)𝑦))) |
| 57 | 56 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol)) |
| 58 | 57 | rspccva 3308 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ* (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
| 59 | 54, 58 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
| 60 | 59 | adantrl 752 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) |
| 61 | | inmbl 23310 |
. . . . . . . 8
⊢ (((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦))) ∈ dom vol) |
| 62 | 52, 60, 61 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ ((◡𝐹 “ (𝑥(,)+∞)) ∩ (◡𝐹 “ (-∞(,)𝑦))) ∈ dom vol) |
| 63 | 50, 62 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (◡𝐹 “ (𝑥(,)𝑦)) ∈ dom vol) |
| 64 | | imaeq2 5462 |
. . . . . . 7
⊢ (𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) = (◡𝐹 “ (𝑥(,)𝑦))) |
| 65 | 64 | eleq1d 2686 |
. . . . . 6
⊢ (𝑧 = (𝑥(,)𝑦) → ((◡𝐹 “ 𝑧) ∈ dom vol ↔ (◡𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)) |
| 66 | 63, 65 | syl5ibrcom 237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*))
→ (𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
| 67 | 66 | rexlimdvva 3038 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ* ∃𝑦 ∈ ℝ*
𝑧 = (𝑥(,)𝑦) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
| 68 | 4, 67 | syl5bi 232 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ran (,) → (◡𝐹 “ 𝑧) ∈ dom vol)) |
| 69 | 68 | ralrimiv 2965 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol) |
| 70 | | ismbf 23397 |
. . 3
⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol)) |
| 71 | 44, 70 | syl 17 |
. 2
⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(◡𝐹 “ 𝑧) ∈ dom vol)) |
| 72 | 69, 71 | mpbird 247 |
1
⊢ (𝜑 → 𝐹 ∈ MblFn) |