Step | Hyp | Ref
| Expression |
1 | | cntop1 21044 |
. . 3
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
2 | 1 | 3ad2ant3 1084 |
. 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
3 | | simpl1 1064 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐾 ∈ Haus) |
4 | | simpl3 1066 |
. . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
5 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ 𝐾 |
7 | 5, 6 | cnf 21050 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
8 | 4, 7 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
9 | | simprll 802 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ∪ 𝐽) |
10 | 8, 9 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ∪ 𝐾) |
11 | | simprlr 803 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ∪ 𝐽) |
12 | 8, 11 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑦) ∈ ∪ 𝐾) |
13 | | simprr 796 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
14 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝑋–1-1→𝑌) |
15 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ dom 𝐹 = ∪ 𝐽) |
16 | 8, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = ∪ 𝐽) |
17 | | f1dm 6105 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1→𝑌 → dom 𝐹 = 𝑋) |
18 | 14, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → dom 𝐹 = 𝑋) |
19 | 16, 18 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∪ 𝐽 = 𝑋) |
20 | 9, 19 | eleqtrd 2703 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑋) |
21 | 11, 19 | eleqtrd 2703 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑋) |
22 | | f1fveq 6519 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
23 | 14, 20, 21, 22 | syl12anc 1324 |
. . . . . . . 8
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
24 | 23 | necon3bid 2838 |
. . . . . . 7
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ 𝑦)) |
25 | 13, 24 | mpbird 247 |
. . . . . 6
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
26 | 6 | hausnei 21132 |
. . . . . 6
⊢ ((𝐾 ∈ Haus ∧ ((𝐹‘𝑥) ∈ ∪ 𝐾 ∧ (𝐹‘𝑦) ∈ ∪ 𝐾 ∧ (𝐹‘𝑥) ≠ (𝐹‘𝑦))) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
27 | 3, 10, 12, 25, 26 | syl13anc 1328 |
. . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
28 | | simpll3 1102 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
29 | | simprll 802 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑢 ∈ 𝐾) |
30 | | cnima 21069 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑢 ∈ 𝐾) → (◡𝐹 “ 𝑢) ∈ 𝐽) |
31 | 28, 29, 30 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑢) ∈ 𝐽) |
32 | | simprlr 803 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑣 ∈ 𝐾) |
33 | | cnima 21069 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑣 ∈ 𝐾) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
34 | 28, 32, 33 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ 𝑣) ∈ 𝐽) |
35 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ ∪ 𝐽) |
36 | | simprr1 1109 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑥) ∈ 𝑢) |
37 | 8 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
38 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ 𝐹 Fn ∪ 𝐽) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝐹 Fn ∪ 𝐽) |
40 | | elpreima 6337 |
. . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) |
41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑥 ∈ (◡𝐹 “ 𝑢) ↔ (𝑥 ∈ ∪ 𝐽 ∧ (𝐹‘𝑥) ∈ 𝑢))) |
42 | 35, 36, 41 | mpbir2and 957 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ (◡𝐹 “ 𝑢)) |
43 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ ∪ 𝐽) |
44 | | simprr2 1110 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝐹‘𝑦) ∈ 𝑣) |
45 | | elpreima 6337 |
. . . . . . . . . 10
⊢ (𝐹 Fn ∪
𝐽 → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) |
46 | 39, 45 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑦 ∈ (◡𝐹 “ 𝑣) ↔ (𝑦 ∈ ∪ 𝐽 ∧ (𝐹‘𝑦) ∈ 𝑣))) |
47 | 43, 44, 46 | mpbir2and 957 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ (◡𝐹 “ 𝑣)) |
48 | | ffun 6048 |
. . . . . . . . . 10
⊢ (𝐹:∪
𝐽⟶∪ 𝐾
→ Fun 𝐹) |
49 | | inpreima 6342 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
50 | 37, 48, 49 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
51 | | simprr3 1111 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 ∩ 𝑣) = ∅) |
52 | 51 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = (◡𝐹 “ ∅)) |
53 | | ima0 5481 |
. . . . . . . . . 10
⊢ (◡𝐹 “ ∅) = ∅ |
54 | 52, 53 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (◡𝐹 “ (𝑢 ∩ 𝑣)) = ∅) |
55 | 50, 54 | eqtr3d 2658 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅) |
56 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑥 ∈ 𝑚 ↔ 𝑥 ∈ (◡𝐹 “ 𝑢))) |
57 | | ineq1 3807 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐹 “ 𝑢) → (𝑚 ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ 𝑛)) |
58 | 57 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑚 ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅)) |
59 | 56, 58 | 3anbi13d 1401 |
. . . . . . . . 9
⊢ (𝑚 = (◡𝐹 “ 𝑢) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅))) |
60 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (𝑦 ∈ 𝑛 ↔ 𝑦 ∈ (◡𝐹 “ 𝑣))) |
61 | | ineq2 3808 |
. . . . . . . . . . 11
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((◡𝐹 “ 𝑢) ∩ 𝑛) = ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣))) |
62 | 61 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑛 = (◡𝐹 “ 𝑣) → (((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅ ↔ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) |
63 | 60, 62 | 3anbi23d 1402 |
. . . . . . . . 9
⊢ (𝑛 = (◡𝐹 “ 𝑣) → ((𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ 𝑛 ∧ ((◡𝐹 “ 𝑢) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅))) |
64 | 59, 63 | rspc2ev 3324 |
. . . . . . . 8
⊢ (((◡𝐹 “ 𝑢) ∈ 𝐽 ∧ (◡𝐹 “ 𝑣) ∈ 𝐽 ∧ (𝑥 ∈ (◡𝐹 “ 𝑢) ∧ 𝑦 ∈ (◡𝐹 “ 𝑣) ∧ ((◡𝐹 “ 𝑢) ∩ (◡𝐹 “ 𝑣)) = ∅)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
65 | 31, 34, 42, 47, 55, 64 | syl113anc 1338 |
. . . . . . 7
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ ((𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾) ∧ ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
66 | 65 | expr 643 |
. . . . . 6
⊢ ((((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) ∧ (𝑢 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾)) → (((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
67 | 66 | rexlimdvva 3038 |
. . . . 5
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → (∃𝑢 ∈ 𝐾 ∃𝑣 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑢 ∧ (𝐹‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
68 | 27, 67 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽) ∧ 𝑥 ≠ 𝑦)) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
69 | 68 | expr 643 |
. . 3
⊢ (((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽)) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
70 | 69 | ralrimivva 2971 |
. 2
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
71 | 5 | ishaus 21126 |
. 2
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
72 | 2, 70, 71 | sylanbrc 698 |
1
⊢ ((𝐾 ∈ Haus ∧ 𝐹:𝑋–1-1→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Haus) |