MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf Structured version   Visualization version   GIF version

Theorem invf 16428
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))

Proof of Theorem invf
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 16424 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
7 funfn 5918 . . . 4 (Fun (𝑋𝑁𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))
86, 7sylib 208 . . 3 (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))
9 isoval.n . . . . 5 𝐼 = (Iso‘𝐶)
101, 2, 3, 4, 5, 9isoval 16425 . . . 4 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
1110fneq2d 5982 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)))
128, 11mpbird 247 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
13 df-rn 5125 . . . 4 ran (𝑋𝑁𝑌) = dom (𝑋𝑁𝑌)
141, 2, 3, 4, 5invsym2 16423 . . . . . 6 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1514dmeqd 5326 . . . . 5 (𝜑 → dom (𝑋𝑁𝑌) = dom (𝑌𝑁𝑋))
161, 2, 3, 5, 4, 9isoval 16425 . . . . 5 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋))
1715, 16eqtr4d 2659 . . . 4 (𝜑 → dom (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
1813, 17syl5eq 2668 . . 3 (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
19 eqimss 3657 . . 3 (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
2018, 19syl 17 . 2 (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
21 df-f 5892 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)))
2212, 20, 21sylanbrc 698 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  ccnv 5113  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  Catccat 16325  Invcinv 16405  Isociso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  invf1o  16429  invisoinvl  16450  invcoisoid  16452  isocoinvid  16453  rcaninv  16454  ffthiso  16589  initoeu2lem1  16664
  Copyright terms: Public domain W3C validator