![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invisoinvl | Structured version Visualization version GIF version |
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 16428 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2017.) |
Ref | Expression |
---|---|
invisoinv.b | ⊢ 𝐵 = (Base‘𝐶) |
invisoinv.i | ⊢ 𝐼 = (Iso‘𝐶) |
invisoinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
invisoinv.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invisoinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invisoinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invisoinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
invisoinvl | ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invisoinv.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invisoinv.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invisoinv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invisoinv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invisoinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | invisoinv.i | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
7 | invisoinv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
8 | eqid 2622 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
9 | eqid 2622 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
10 | 1, 9, 3, 5 | idiso 16448 | . . . . 5 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌)) |
11 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
12 | 11 | oveqd 6667 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌)) |
13 | 10, 12 | eleqtrrd 2704 | . . . 4 ⊢ (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 5, 13 | invco 16431 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)))) |
15 | eqid 2622 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
16 | 1, 15, 6, 3, 4, 5 | isohom 16436 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 16, 7 | sseldd 3604 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 1, 15, 9, 3, 4, 8, 5, 17 | catlid 16344 | . . 3 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)𝐹) = 𝐹) |
19 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (Inv‘𝐶)) |
20 | 19 | oveqd 6667 | . . . . . . 7 ⊢ (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌)) |
21 | 20 | fveq1d 6193 | . . . . . 6 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌))) |
22 | 1, 9, 3, 5 | idinv 16449 | . . . . . 6 ⊢ (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
23 | 21, 22 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
24 | 23 | oveq2d 6666 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌))) |
25 | 1, 15, 6, 3, 5, 4 | isohom 16436 | . . . . . 6 ⊢ (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋)) |
26 | 1, 2, 3, 4, 5, 6 | invf 16428 | . . . . . . 7 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
27 | 26, 7 | ffvelrnd 6360 | . . . . . 6 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋)) |
28 | 25, 27 | sseldd 3604 | . . . . 5 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋)) |
29 | 1, 15, 9, 3, 5, 8, 4, 28 | catrid 16345 | . . . 4 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹)) |
30 | 24, 29 | eqtrd 2656 | . . 3 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(〈𝑌, 𝑌〉(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹)) |
31 | 14, 18, 30 | 3brtr3d 4684 | . 2 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)) |
32 | 1, 2, 3, 5, 4 | invsym 16422 | . 2 ⊢ (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹 ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))) |
33 | 31, 32 | mpbird 247 | 1 ⊢ (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 Idccid 16326 Invcinv 16405 Isociso 16406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-cat 16329 df-cid 16330 df-sect 16407 df-inv 16408 df-iso 16409 |
This theorem is referenced by: invisoinvr 16451 isocoinvid 16453 |
Copyright terms: Public domain | W3C validator |