MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   GIF version

Theorem invisoinvl 16450
Description: The inverse of an isomorphism 𝐹 (which is unique because of invf 16428 and is therefore denoted by ((𝑋𝑁𝑌)‘𝐹), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2017.)
Hypotheses
Ref Expression
invisoinv.b 𝐵 = (Base‘𝐶)
invisoinv.i 𝐼 = (Iso‘𝐶)
invisoinv.n 𝑁 = (Inv‘𝐶)
invisoinv.c (𝜑𝐶 ∈ Cat)
invisoinv.x (𝜑𝑋𝐵)
invisoinv.y (𝜑𝑌𝐵)
invisoinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invisoinvl (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4 𝐵 = (Base‘𝐶)
2 invisoinv.n . . . 4 𝑁 = (Inv‘𝐶)
3 invisoinv.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invisoinv.x . . . 4 (𝜑𝑋𝐵)
5 invisoinv.y . . . 4 (𝜑𝑌𝐵)
6 invisoinv.i . . . 4 𝐼 = (Iso‘𝐶)
7 invisoinv.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
8 eqid 2622 . . . 4 (comp‘𝐶) = (comp‘𝐶)
9 eqid 2622 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
101, 9, 3, 5idiso 16448 . . . . 5 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌(Iso‘𝐶)𝑌))
116a1i 11 . . . . . 6 (𝜑𝐼 = (Iso‘𝐶))
1211oveqd 6667 . . . . 5 (𝜑 → (𝑌𝐼𝑌) = (𝑌(Iso‘𝐶)𝑌))
1310, 12eleqtrrd 2704 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐼𝑌))
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 16431 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹)(𝑋𝑁𝑌)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))))
15 eqid 2622 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
161, 15, 6, 3, 4, 5isohom 16436 . . . . 5 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1716, 7sseldd 3604 . . . 4 (𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
181, 15, 9, 3, 4, 8, 5, 17catlid 16344 . . 3 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐹) = 𝐹)
192a1i 11 . . . . . . . 8 (𝜑𝑁 = (Inv‘𝐶))
2019oveqd 6667 . . . . . . 7 (𝜑 → (𝑌𝑁𝑌) = (𝑌(Inv‘𝐶)𝑌))
2120fveq1d 6193 . . . . . 6 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)))
221, 9, 3, 5idinv 16449 . . . . . 6 (𝜑 → ((𝑌(Inv‘𝐶)𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2321, 22eqtrd 2656 . . . . 5 (𝜑 → ((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌)) = ((Id‘𝐶)‘𝑌))
2423oveq2d 6666 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)))
251, 15, 6, 3, 5, 4isohom 16436 . . . . . 6 (𝜑 → (𝑌𝐼𝑋) ⊆ (𝑌(Hom ‘𝐶)𝑋))
261, 2, 3, 4, 5, 6invf 16428 . . . . . . 7 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
2726, 7ffvelrnd 6360 . . . . . 6 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌𝐼𝑋))
2825, 27sseldd 3604 . . . . 5 (𝜑 → ((𝑋𝑁𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
291, 15, 9, 3, 5, 8, 4, 28catrid 16345 . . . 4 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑌)) = ((𝑋𝑁𝑌)‘𝐹))
3024, 29eqtrd 2656 . . 3 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑌, 𝑌⟩(comp‘𝐶)𝑋)((𝑌𝑁𝑌)‘((Id‘𝐶)‘𝑌))) = ((𝑋𝑁𝑌)‘𝐹))
3114, 18, 303brtr3d 4684 . 2 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
321, 2, 3, 5, 4invsym 16422 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
3331, 32mpbird 247 1 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌𝑁𝑋)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  Invcinv 16405  Isociso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  invisoinvr  16451  isocoinvid  16453
  Copyright terms: Public domain W3C validator