![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 5980 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 Fn wfn 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-fn 5891 |
This theorem is referenced by: fneq12d 5983 fnprb 6472 fntpb 6473 fnpr2g 6474 undifixp 7944 brwdom2 8478 dfac3 8944 ac7g 9296 ccatlid 13369 ccatrid 13370 ccatass 13371 ccatswrd 13456 swrdccat2 13458 swrdswrd 13460 swrdccatin2 13487 swrdccatin12 13491 revccat 13515 revrev 13516 repsdf2 13525 0csh0 13539 cshco 13582 wrd2pr2op 13687 wrd3tpop 13691 ofccat 13708 seqshft 13825 invf 16428 sscfn1 16477 sscfn2 16478 isssc 16480 fuchom 16621 estrchomfeqhom 16776 mulgfval 17542 symgplusg 17809 subrgascl 19498 frlmsslss2 20114 m1detdiag 20403 ptval 21373 xpsdsfn2 22183 fresf1o 29433 psgndmfi 29846 pl1cn 30001 signsvtn0 30647 signstres 30652 bnj927 30839 poimirlem1 33410 poimirlem2 33411 poimirlem3 33412 poimirlem4 33413 poimirlem6 33415 poimirlem7 33416 poimirlem11 33420 poimirlem12 33421 poimirlem16 33425 poimirlem17 33426 poimirlem19 33428 poimirlem20 33429 dibfnN 36445 dihintcl 36633 uzmptshftfval 38545 ccatpfx 41409 pfxccatin12 41425 srhmsubc 42076 srhmsubcALTV 42094 |
Copyright terms: Public domain | W3C validator |