| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invisoinvl | Structured version Visualization version Unicode version | ||
| Description: The inverse of an
isomorphism |
| Ref | Expression |
|---|---|
| invisoinv.b |
|
| invisoinv.i |
|
| invisoinv.n |
|
| invisoinv.c |
|
| invisoinv.x |
|
| invisoinv.y |
|
| invisoinv.f |
|
| Ref | Expression |
|---|---|
| invisoinvl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b |
. . . 4
| |
| 2 | invisoinv.n |
. . . 4
| |
| 3 | invisoinv.c |
. . . 4
| |
| 4 | invisoinv.x |
. . . 4
| |
| 5 | invisoinv.y |
. . . 4
| |
| 6 | invisoinv.i |
. . . 4
| |
| 7 | invisoinv.f |
. . . 4
| |
| 8 | eqid 2622 |
. . . 4
| |
| 9 | eqid 2622 |
. . . . . 6
| |
| 10 | 1, 9, 3, 5 | idiso 16448 |
. . . . 5
|
| 11 | 6 | a1i 11 |
. . . . . 6
|
| 12 | 11 | oveqd 6667 |
. . . . 5
|
| 13 | 10, 12 | eleqtrrd 2704 |
. . . 4
|
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 5, 13 | invco 16431 |
. . 3
|
| 15 | eqid 2622 |
. . . 4
| |
| 16 | 1, 15, 6, 3, 4, 5 | isohom 16436 |
. . . . 5
|
| 17 | 16, 7 | sseldd 3604 |
. . . 4
|
| 18 | 1, 15, 9, 3, 4, 8, 5, 17 | catlid 16344 |
. . 3
|
| 19 | 2 | a1i 11 |
. . . . . . . 8
|
| 20 | 19 | oveqd 6667 |
. . . . . . 7
|
| 21 | 20 | fveq1d 6193 |
. . . . . 6
|
| 22 | 1, 9, 3, 5 | idinv 16449 |
. . . . . 6
|
| 23 | 21, 22 | eqtrd 2656 |
. . . . 5
|
| 24 | 23 | oveq2d 6666 |
. . . 4
|
| 25 | 1, 15, 6, 3, 5, 4 | isohom 16436 |
. . . . . 6
|
| 26 | 1, 2, 3, 4, 5, 6 | invf 16428 |
. . . . . . 7
|
| 27 | 26, 7 | ffvelrnd 6360 |
. . . . . 6
|
| 28 | 25, 27 | sseldd 3604 |
. . . . 5
|
| 29 | 1, 15, 9, 3, 5, 8, 4, 28 | catrid 16345 |
. . . 4
|
| 30 | 24, 29 | eqtrd 2656 |
. . 3
|
| 31 | 14, 18, 30 | 3brtr3d 4684 |
. 2
|
| 32 | 1, 2, 3, 5, 4 | invsym 16422 |
. 2
|
| 33 | 31, 32 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-cat 16329 df-cid 16330 df-sect 16407 df-inv 16408 df-iso 16409 |
| This theorem is referenced by: invisoinvr 16451 isocoinvid 16453 |
| Copyright terms: Public domain | W3C validator |