MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invisoinvl Structured version   Visualization version   Unicode version

Theorem invisoinvl 16450
Description: The inverse of an isomorphism  F (which is unique because of invf 16428 and is therefore denoted by  ( ( X N Y ) `  F
), see also remark 3.12 in [Adamek] p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2017.)
Hypotheses
Ref Expression
invisoinv.b  |-  B  =  ( Base `  C
)
invisoinv.i  |-  I  =  (  Iso  `  C
)
invisoinv.n  |-  N  =  (Inv `  C )
invisoinv.c  |-  ( ph  ->  C  e.  Cat )
invisoinv.x  |-  ( ph  ->  X  e.  B )
invisoinv.y  |-  ( ph  ->  Y  e.  B )
invisoinv.f  |-  ( ph  ->  F  e.  ( X I Y ) )
Assertion
Ref Expression
invisoinvl  |-  ( ph  ->  ( ( X N Y ) `  F
) ( Y N X ) F )

Proof of Theorem invisoinvl
StepHypRef Expression
1 invisoinv.b . . . 4  |-  B  =  ( Base `  C
)
2 invisoinv.n . . . 4  |-  N  =  (Inv `  C )
3 invisoinv.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 invisoinv.x . . . 4  |-  ( ph  ->  X  e.  B )
5 invisoinv.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 invisoinv.i . . . 4  |-  I  =  (  Iso  `  C
)
7 invisoinv.f . . . 4  |-  ( ph  ->  F  e.  ( X I Y ) )
8 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
9 eqid 2622 . . . . . 6  |-  ( Id
`  C )  =  ( Id `  C
)
101, 9, 3, 5idiso 16448 . . . . 5  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  e.  ( Y (  Iso  `  C
) Y ) )
116a1i 11 . . . . . 6  |-  ( ph  ->  I  =  (  Iso  `  C ) )
1211oveqd 6667 . . . . 5  |-  ( ph  ->  ( Y I Y )  =  ( Y (  Iso  `  C
) Y ) )
1310, 12eleqtrrd 2704 . . . 4  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  e.  ( Y I Y ) )
141, 2, 3, 4, 5, 6, 7, 8, 5, 13invco 16431 . . 3  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) F ) ( X N Y ) ( ( ( X N Y ) `  F
) ( <. Y ,  Y >. (comp `  C
) X ) ( ( Y N Y ) `  ( ( Id `  C ) `
 Y ) ) ) )
15 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
161, 15, 6, 3, 4, 5isohom 16436 . . . . 5  |-  ( ph  ->  ( X I Y )  C_  ( X
( Hom  `  C ) Y ) )
1716, 7sseldd 3604 . . . 4  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
181, 15, 9, 3, 4, 8, 5, 17catlid 16344 . . 3  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >. (comp `  C ) Y ) F )  =  F )
192a1i 11 . . . . . . . 8  |-  ( ph  ->  N  =  (Inv `  C ) )
2019oveqd 6667 . . . . . . 7  |-  ( ph  ->  ( Y N Y )  =  ( Y (Inv `  C ) Y ) )
2120fveq1d 6193 . . . . . 6  |-  ( ph  ->  ( ( Y N Y ) `  (
( Id `  C
) `  Y )
)  =  ( ( Y (Inv `  C
) Y ) `  ( ( Id `  C ) `  Y
) ) )
221, 9, 3, 5idinv 16449 . . . . . 6  |-  ( ph  ->  ( ( Y (Inv
`  C ) Y ) `  ( ( Id `  C ) `
 Y ) )  =  ( ( Id
`  C ) `  Y ) )
2321, 22eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( Y N Y ) `  (
( Id `  C
) `  Y )
)  =  ( ( Id `  C ) `
 Y ) )
2423oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( <. Y ,  Y >. (comp `  C ) X ) ( ( Y N Y ) `  (
( Id `  C
) `  Y )
) )  =  ( ( ( X N Y ) `  F
) ( <. Y ,  Y >. (comp `  C
) X ) ( ( Id `  C
) `  Y )
) )
251, 15, 6, 3, 5, 4isohom 16436 . . . . . 6  |-  ( ph  ->  ( Y I X )  C_  ( Y
( Hom  `  C ) X ) )
261, 2, 3, 4, 5, 6invf 16428 . . . . . . 7  |-  ( ph  ->  ( X N Y ) : ( X I Y ) --> ( Y I X ) )
2726, 7ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( ( X N Y ) `  F
)  e.  ( Y I X ) )
2825, 27sseldd 3604 . . . . 5  |-  ( ph  ->  ( ( X N Y ) `  F
)  e.  ( Y ( Hom  `  C
) X ) )
291, 15, 9, 3, 5, 8, 4, 28catrid 16345 . . . 4  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( <. Y ,  Y >. (comp `  C ) X ) ( ( Id `  C ) `  Y
) )  =  ( ( X N Y ) `  F ) )
3024, 29eqtrd 2656 . . 3  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( <. Y ,  Y >. (comp `  C ) X ) ( ( Y N Y ) `  (
( Id `  C
) `  Y )
) )  =  ( ( X N Y ) `  F ) )
3114, 18, 303brtr3d 4684 . 2  |-  ( ph  ->  F ( X N Y ) ( ( X N Y ) `
 F ) )
321, 2, 3, 5, 4invsym 16422 . 2  |-  ( ph  ->  ( ( ( X N Y ) `  F ) ( Y N X ) F  <-> 
F ( X N Y ) ( ( X N Y ) `
 F ) ) )
3331, 32mpbird 247 1  |-  ( ph  ->  ( ( X N Y ) `  F
) ( Y N X ) F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409
This theorem is referenced by:  invisoinvr  16451  isocoinvid  16453
  Copyright terms: Public domain W3C validator