Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinico Structured version   Visualization version   GIF version

Theorem iocinico 37797
Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
Assertion
Ref Expression
iocinico (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})

Proof of Theorem iocinico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-in 3581 . . . . . 6 ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))}
2 elioc1 12217 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
323adant3 1081 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵)))
4 3simpb 1059 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥𝐵) → (𝑥 ∈ ℝ*𝑥𝐵))
53, 4syl6bi 243 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴(,]𝐵) → (𝑥 ∈ ℝ*𝑥𝐵)))
6 elico1 12218 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
763adant1 1079 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
8 3simpa 1058 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶) → (𝑥 ∈ ℝ*𝐵𝑥))
97, 8syl6bi 243 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) → (𝑥 ∈ ℝ*𝐵𝑥)))
105, 9anim12d 586 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥))))
11 simpll 790 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥 ∈ ℝ*)
12 simprr 796 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝐵𝑥)
13 simplr 792 . . . . . . . . . 10 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → 𝑥𝐵)
1411, 12, 133jca 1242 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑥𝐵) ∧ (𝑥 ∈ ℝ*𝐵𝑥)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵))
1510, 14syl6 35 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
16 elicc1 12219 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1716anidms 677 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
18173ad2ant2 1083 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥𝐵)))
1915, 18sylibrd 249 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ (𝐵[,]𝐵)))
2019ss2abdv 3675 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → {𝑥 ∣ (𝑥 ∈ (𝐴(,]𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))} ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
211, 20syl5eqss 3649 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝑥𝑥 ∈ (𝐵[,]𝐵)})
22 abid2 2745 . . . . 5 {𝑥𝑥 ∈ (𝐵[,]𝐵)} = (𝐵[,]𝐵)
2321, 22syl6sseq 3651 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
2423adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ (𝐵[,]𝐵))
25 iccid 12220 . . . . 5 (𝐵 ∈ ℝ* → (𝐵[,]𝐵) = {𝐵})
26253ad2ant2 1083 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵[,]𝐵) = {𝐵})
2726adantr 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵[,]𝐵) = {𝐵})
2824, 27sseqtrd 3641 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) ⊆ {𝐵})
29 simpl2 1065 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
30 simprl 794 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐴 < 𝐵)
31 xrleid 11983 . . . . . 6 (𝐵 ∈ ℝ*𝐵𝐵)
3229, 31syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
33 elioc1 12217 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
34333adant3 1081 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3534adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐴(,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴 < 𝐵𝐵𝐵)))
3629, 30, 32, 35mpbir3and 1245 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐴(,]𝐵))
37 simprr 796 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
38 elico1 12218 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
39383adant1 1079 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4039adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ (𝐵[,)𝐶) ↔ (𝐵 ∈ ℝ*𝐵𝐵𝐵 < 𝐶)))
4129, 32, 37, 40mpbir3and 1245 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ (𝐵[,)𝐶))
4236, 41elind 3798 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4342snssd 4340 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)))
4428, 43eqssd 3620 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,]𝐵) ∩ (𝐵[,)𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  (class class class)co 6650  *cxr 10073   < clt 10074  cle 10075  (,]cioc 12176  [,)cico 12177  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioc 12180  df-ico 12181  df-icc 12182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator