![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version |
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf 22212 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | fovrn 6804 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
3 | 1, 2 | syl3an1 1359 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
4 | 3 | elpwid 4170 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝ*cxr 10073 ∞Metcxmt 19731 ballcbl 19733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-xr 10078 df-psmet 19738 df-xmet 19739 df-bl 19741 |
This theorem is referenced by: blpnfctr 22241 xmetresbl 22242 imasf1oxms 22294 prdsbl 22296 blcld 22310 blcls 22311 prdsxmslem2 22334 metcnp 22346 cnllycmp 22755 lebnumlem3 22762 lebnum 22763 cfil3i 23067 iscfil3 23071 cfilfcls 23072 iscmet3lem2 23090 equivcfil 23097 caublcls 23107 relcmpcmet 23115 cmpcmet 23116 cncmet 23119 bcthlem2 23122 bcthlem4 23124 dvlip2 23758 dv11cn 23764 pserdvlem2 24182 pserdv 24183 abelthlem3 24187 abelthlem5 24189 dvlog2lem 24398 dvlog2 24399 efopnlem2 24403 efopn 24404 logtayl 24406 efrlim 24696 blsconn 31226 sstotbnd2 33573 equivtotbnd 33577 isbnd2 33582 blbnd 33586 totbndbnd 33588 prdstotbnd 33593 prdsbnd2 33594 ismtyima 33602 heiborlem3 33612 heiborlem8 33617 |
Copyright terms: Public domain | W3C validator |