Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngod Structured version   Visualization version   GIF version

Theorem isrngod 33697
Description: Conditions that determine a ring. (Changed label from isringd 18585 to isrngod 33697-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
isringod.1 (𝜑𝐺 ∈ AbelOp)
isringod.2 (𝜑𝑋 = ran 𝐺)
isringod.3 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
isringod.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
isringod.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
isringod.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
isringod.7 (𝜑𝑈𝑋)
isringod.8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
isringod.9 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
Assertion
Ref Expression
isrngod (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑈,𝑦
Allowed substitution hint:   𝑈(𝑧)

Proof of Theorem isrngod
StepHypRef Expression
1 isringod.1 . . 3 (𝜑𝐺 ∈ AbelOp)
2 isringod.3 . . . 4 (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)
3 isringod.2 . . . . . 6 (𝜑𝑋 = ran 𝐺)
43sqxpeqd 5141 . . . . 5 (𝜑 → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
54, 3feq23d 6040 . . . 4 (𝜑 → (𝐻:(𝑋 × 𝑋)⟶𝑋𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺))
62, 5mpbid 222 . . 3 (𝜑𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
7 isringod.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
8 isringod.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))
9 isringod.6 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))
107, 8, 93jca 1242 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
1110ralrimivvva 2972 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
123raleqdv 3144 . . . . . . 7 (𝜑 → (∀𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
133, 12raleqbidv 3152 . . . . . 6 (𝜑 → (∀𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
143, 13raleqbidv 3152 . . . . 5 (𝜑 → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))))
1511, 14mpbid 222 . . . 4 (𝜑 → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))
16 isringod.7 . . . . . 6 (𝜑𝑈𝑋)
17 isringod.8 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)
18 isringod.9 . . . . . . . 8 ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)
1917, 18jca 554 . . . . . . 7 ((𝜑𝑦𝑋) → ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
2019ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦))
21 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
2221eqeq1d 2624 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) = 𝑦 ↔ (𝑈𝐻𝑦) = 𝑦))
23 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑦𝐻𝑥) = (𝑦𝐻𝑈))
2423eqeq1d 2624 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑦𝐻𝑥) = 𝑦 ↔ (𝑦𝐻𝑈) = 𝑦))
2522, 24anbi12d 747 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2625ralbidv 2986 . . . . . . 7 (𝑥 = 𝑈 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)))
2726rspcev 3309 . . . . . 6 ((𝑈𝑋 ∧ ∀𝑦𝑋 ((𝑈𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑈) = 𝑦)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
2816, 20, 27syl2anc 693 . . . . 5 (𝜑 → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
293raleqdv 3144 . . . . . 6 (𝜑 → (∀𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
303, 29rexeqbidv 3153 . . . . 5 (𝜑 → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
3128, 30mpbid 222 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
3215, 31jca 554 . . 3 (𝜑 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
331, 6, 32jca31 557 . 2 (𝜑 → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
34 rnexg 7098 . . . . . 6 (𝐺 ∈ AbelOp → ran 𝐺 ∈ V)
351, 34syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ V)
36 xpexg 6960 . . . . 5 ((ran 𝐺 ∈ V ∧ ran 𝐺 ∈ V) → (ran 𝐺 × ran 𝐺) ∈ V)
3735, 35, 36syl2anc 693 . . . 4 (𝜑 → (ran 𝐺 × ran 𝐺) ∈ V)
38 fex 6490 . . . 4 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ (ran 𝐺 × ran 𝐺) ∈ V) → 𝐻 ∈ V)
396, 37, 38syl2anc 693 . . 3 (𝜑𝐻 ∈ V)
40 eqid 2622 . . . 4 ran 𝐺 = ran 𝐺
4140isrngo 33696 . . 3 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
4239, 41syl 17 . 2 (𝜑 → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
4333, 42mpbird 247 1 (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cop 4183   × cxp 5112  ran crn 5115  wf 5884  (class class class)co 6650  AbelOpcablo 27398  RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-rngo 33694
This theorem is referenced by:  iscringd  33797
  Copyright terms: Public domain W3C validator