![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq23d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
feq23d.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
feq23d.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
feq23d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2623 | . 2 ⊢ (𝜑 → 𝐹 = 𝐹) | |
2 | feq23d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | feq23d.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 1, 2, 3 | feq123d 6034 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ⟶wf 5884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
This theorem is referenced by: nvof1o 6536 axdc4uz 12783 isacs 16312 isfunc 16524 funcres 16556 funcpropd 16560 estrcco 16770 funcestrcsetclem9 16788 fullestrcsetc 16791 fullsetcestrc 16806 1stfcl 16837 2ndfcl 16838 evlfcl 16862 curf1cl 16868 yonedalem3b 16919 intopsn 17253 mhmpropd 17341 pwssplit1 19059 evls1sca 19688 islindf 20151 rrxds 23181 wlkp1 26578 acunirnmpt 29459 cnmbfm 30325 wrdfd 30616 elmrsubrn 31417 poimirlem3 33412 poimirlem28 33437 isrngod 33697 rngosn3 33723 isgrpda 33754 islfld 34349 tendofset 36046 tendoset 36047 mapfzcons 37279 diophrw 37322 refsum2cnlem1 39196 mgmhmpropd 41785 funcringcsetcALTV2lem9 42044 funcringcsetclem9ALTV 42067 aacllem 42547 |
Copyright terms: Public domain | W3C validator |