MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23d Structured version   Visualization version   GIF version

Theorem feq23d 6040
Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
feq23d.1 (𝜑𝐴 = 𝐶)
feq23d.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
feq23d (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))

Proof of Theorem feq23d
StepHypRef Expression
1 eqidd 2623 . 2 (𝜑𝐹 = 𝐹)
2 feq23d.1 . 2 (𝜑𝐴 = 𝐶)
3 feq23d.2 . 2 (𝜑𝐵 = 𝐷)
41, 2, 3feq123d 6034 1 (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  nvof1o  6536  axdc4uz  12783  isacs  16312  isfunc  16524  funcres  16556  funcpropd  16560  estrcco  16770  funcestrcsetclem9  16788  fullestrcsetc  16791  fullsetcestrc  16806  1stfcl  16837  2ndfcl  16838  evlfcl  16862  curf1cl  16868  yonedalem3b  16919  intopsn  17253  mhmpropd  17341  pwssplit1  19059  evls1sca  19688  islindf  20151  rrxds  23181  wlkp1  26578  acunirnmpt  29459  cnmbfm  30325  wrdfd  30616  elmrsubrn  31417  poimirlem3  33412  poimirlem28  33437  isrngod  33697  rngosn3  33723  isgrpda  33754  islfld  34349  tendofset  36046  tendoset  36047  mapfzcons  37279  diophrw  37322  refsum2cnlem1  39196  mgmhmpropd  41785  funcringcsetcALTV2lem9  42044  funcringcsetclem9ALTV  42067  aacllem  42547
  Copyright terms: Public domain W3C validator