MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-5lem Structured version   Visualization version   GIF version

Theorem ist1-5lem 21623
Description: Lemma for ist1-5 21625 and similar theorems. If 𝐴 is a topological property which implies T0, such as T1 or T2, the property can be "decomposed" into T0 and a non-T0 version of property 𝐴 (which is defined as stating that the Kolmogorov quotient of the space has property 𝐴). For example, if 𝐴 is T1, then the theorem states that a space is T1 iff it is T0 and its Kolmogorov quotient is T1 (we call this property R0). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
ist1-5lem.1 (𝐽𝐴𝐽 ∈ Kol2)
ist1-5lem.2 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
ist1-5lem.3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
Assertion
Ref Expression
ist1-5lem (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))

Proof of Theorem ist1-5lem
StepHypRef Expression
1 ist1-5lem.1 . . 3 (𝐽𝐴𝐽 ∈ Kol2)
2 kqhmph 21622 . . . . 5 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
31, 2sylib 208 . . . 4 (𝐽𝐴𝐽 ≃ (KQ‘𝐽))
4 ist1-5lem.2 . . . 4 (𝐽 ≃ (KQ‘𝐽) → (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴))
53, 4mpcom 38 . . 3 (𝐽𝐴 → (KQ‘𝐽) ∈ 𝐴)
61, 5jca 554 . 2 (𝐽𝐴 → (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
7 hmphsym 21585 . . . . 5 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
82, 7sylbi 207 . . . 4 (𝐽 ∈ Kol2 → (KQ‘𝐽) ≃ 𝐽)
9 ist1-5lem.3 . . . 4 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
108, 9syl 17 . . 3 (𝐽 ∈ Kol2 → ((KQ‘𝐽) ∈ 𝐴𝐽𝐴))
1110imp 445 . 2 ((𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴) → 𝐽𝐴)
126, 11impbii 199 1 (𝐽𝐴 ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990   class class class wbr 4653  cfv 5888  Kol2ct0 21110  KQckq 21496  chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031  df-t0 21117  df-kq 21497  df-hmeo 21558  df-hmph 21559
This theorem is referenced by:  ist1-5  21625  ishaus3  21626
  Copyright terms: Public domain W3C validator