MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqhmph Structured version   Visualization version   GIF version

Theorem kqhmph 21622
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqhmph (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))

Proof of Theorem kqhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t0top 21133 . . . . . 6 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 eqid 2622 . . . . . . 7 𝐽 = 𝐽
32toptopon 20722 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
41, 3sylib 208 . . . . 5 (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘ 𝐽))
5 eqid 2622 . . . . . 6 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
65t0kq 21621 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
74, 6syl 17 . . . 4 (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
87ibi 256 . . 3 (𝐽 ∈ Kol2 → (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))
9 hmphi 21580 . . 3 ((𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
108, 9syl 17 . 2 (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽))
11 hmphsym 21585 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
12 hmphtop1 21582 . . . 4 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top)
13 kqt0 21549 . . . 4 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
1412, 13sylib 208 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2)
15 t0hmph 21593 . . 3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1611, 14, 15sylc 65 . 2 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2)
1710, 16impbii 199 1 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  {crab 2916   cuni 4436   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715  Kol2ct0 21110  KQckq 21496  Homeochmeo 21556  chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031  df-t0 21117  df-kq 21497  df-hmeo 21558  df-hmph 21559
This theorem is referenced by:  ist1-5lem  21623  t1r0  21624
  Copyright terms: Public domain W3C validator