| Step | Hyp | Ref
| Expression |
| 1 | | domnring 19296 |
. . . . 5
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 2 | 1 | adantl 482 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ Ring) |
| 3 | | domnnzr 19295 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 4 | 3 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ NzRing) |
| 5 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 6 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 7 | 5, 6 | nzrnz 19260 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 8 | 4, 7 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) →
(1r‘𝑅)
≠ (0g‘𝑅)) |
| 9 | 8 | neneqd 2799 |
. . . . . . . 8
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬
(1r‘𝑅) =
(0g‘𝑅)) |
| 10 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 11 | 10, 6, 5 | 0unit 18680 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((0g‘𝑅)
∈ (Unit‘𝑅)
↔ (1r‘𝑅) = (0g‘𝑅))) |
| 12 | 2, 11 | syl 17 |
. . . . . . . 8
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) →
((0g‘𝑅)
∈ (Unit‘𝑅)
↔ (1r‘𝑅) = (0g‘𝑅))) |
| 13 | 9, 12 | mtbird 315 |
. . . . . . 7
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬
(0g‘𝑅)
∈ (Unit‘𝑅)) |
| 14 | | disjsn 4246 |
. . . . . . 7
⊢
(((Unit‘𝑅)
∩ {(0g‘𝑅)}) = ∅ ↔ ¬
(0g‘𝑅)
∈ (Unit‘𝑅)) |
| 15 | 13, 14 | sylibr 224 |
. . . . . 6
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) →
((Unit‘𝑅) ∩
{(0g‘𝑅)})
= ∅) |
| 16 | | fidomndrng.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 17 | 16, 10 | unitss 18660 |
. . . . . . 7
⊢
(Unit‘𝑅)
⊆ 𝐵 |
| 18 | | reldisj 4020 |
. . . . . . 7
⊢
((Unit‘𝑅)
⊆ 𝐵 →
(((Unit‘𝑅) ∩
{(0g‘𝑅)})
= ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g‘𝑅)}))) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . 6
⊢
(((Unit‘𝑅)
∩ {(0g‘𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g‘𝑅)})) |
| 20 | 15, 19 | sylib 208 |
. . . . 5
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) →
(Unit‘𝑅) ⊆
(𝐵 ∖
{(0g‘𝑅)})) |
| 21 | | eqid 2622 |
. . . . . . . . 9
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
| 22 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 23 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝑅 ∈ Domn) |
| 24 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝐵 ∈ Fin) |
| 25 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) |
| 26 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 ↦ (𝑦(.r‘𝑅)𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑦(.r‘𝑅)𝑥)) |
| 27 | 16, 6, 5, 21, 22, 23, 24, 25, 26 | fidomndrnglem 19306 |
. . . . . . . 8
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝑥(∥r‘𝑅)(1r‘𝑅)) |
| 28 | | eqid 2622 |
. . . . . . . . . 10
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 29 | 28, 16 | opprbas 18629 |
. . . . . . . . 9
⊢ 𝐵 =
(Base‘(oppr‘𝑅)) |
| 30 | 28, 6 | oppr0 18633 |
. . . . . . . . 9
⊢
(0g‘𝑅) =
(0g‘(oppr‘𝑅)) |
| 31 | 28, 5 | oppr1 18634 |
. . . . . . . . 9
⊢
(1r‘𝑅) =
(1r‘(oppr‘𝑅)) |
| 32 | | eqid 2622 |
. . . . . . . . 9
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) |
| 33 | | eqid 2622 |
. . . . . . . . 9
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
| 34 | 28 | opprdomn 19301 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn →
(oppr‘𝑅) ∈ Domn) |
| 35 | 23, 34 | syl 17 |
. . . . . . . . 9
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) →
(oppr‘𝑅) ∈ Domn) |
| 36 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 ↦ (𝑦(.r‘(oppr‘𝑅))𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑦(.r‘(oppr‘𝑅))𝑥)) |
| 37 | 29, 30, 31, 32, 33, 35, 24, 25, 36 | fidomndrnglem 19306 |
. . . . . . . 8
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 38 | 10, 5, 21, 28, 32 | isunit 18657 |
. . . . . . . 8
⊢ (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 39 | 27, 37, 38 | sylanbrc 698 |
. . . . . . 7
⊢ (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)})) → 𝑥 ∈ (Unit‘𝑅)) |
| 40 | 39 | ex 450 |
. . . . . 6
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝑥 ∈ (𝐵 ∖ {(0g‘𝑅)}) → 𝑥 ∈ (Unit‘𝑅))) |
| 41 | 40 | ssrdv 3609 |
. . . . 5
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝐵 ∖
{(0g‘𝑅)})
⊆ (Unit‘𝑅)) |
| 42 | 20, 41 | eqssd 3620 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) →
(Unit‘𝑅) = (𝐵 ∖
{(0g‘𝑅)})) |
| 43 | 16, 10, 6 | isdrng 18751 |
. . . 4
⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧
(Unit‘𝑅) = (𝐵 ∖
{(0g‘𝑅)}))) |
| 44 | 2, 42, 43 | sylanbrc 698 |
. . 3
⊢ ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈
DivRing) |
| 45 | 44 | ex 450 |
. 2
⊢ (𝐵 ∈ Fin → (𝑅 ∈ Domn → 𝑅 ∈
DivRing)) |
| 46 | | drngdomn 19303 |
. 2
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Domn) |
| 47 | 45, 46 | impbid1 215 |
1
⊢ (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈
DivRing)) |