| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isunit | Structured version Visualization version Unicode version | ||
| Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.) |
| Ref | Expression |
|---|---|
| unit.1 |
|
| unit.2 |
|
| unit.3 |
|
| unit.4 |
|
| unit.5 |
|
| Ref | Expression |
|---|---|
| isunit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6220 |
. . . 4
| |
| 2 | unit.1 |
. . . 4
| |
| 3 | 1, 2 | eleq2s 2719 |
. . 3
|
| 4 | 3 | elexd 3214 |
. 2
|
| 5 | df-br 4654 |
. . . 4
| |
| 6 | elfvdm 6220 |
. . . . . 6
| |
| 7 | unit.3 |
. . . . . 6
| |
| 8 | 6, 7 | eleq2s 2719 |
. . . . 5
|
| 9 | 8 | elexd 3214 |
. . . 4
|
| 10 | 5, 9 | sylbi 207 |
. . 3
|
| 11 | 10 | adantr 481 |
. 2
|
| 12 | fveq2 6191 |
. . . . . . . . . 10
| |
| 13 | 12, 7 | syl6eqr 2674 |
. . . . . . . . 9
|
| 14 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 15 | unit.4 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 17 | 16 | fveq2d 6195 |
. . . . . . . . . 10
|
| 18 | unit.5 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . . . 9
|
| 20 | 13, 19 | ineq12d 3815 |
. . . . . . . 8
|
| 21 | 20 | cnveqd 5298 |
. . . . . . 7
|
| 22 | fveq2 6191 |
. . . . . . . . 9
| |
| 23 | unit.2 |
. . . . . . . . 9
| |
| 24 | 22, 23 | syl6eqr 2674 |
. . . . . . . 8
|
| 25 | 24 | sneqd 4189 |
. . . . . . 7
|
| 26 | 21, 25 | imaeq12d 5467 |
. . . . . 6
|
| 27 | df-unit 18642 |
. . . . . 6
| |
| 28 | fvex 6201 |
. . . . . . . . . 10
| |
| 29 | 7, 28 | eqeltri 2697 |
. . . . . . . . 9
|
| 30 | 29 | inex1 4799 |
. . . . . . . 8
|
| 31 | 30 | cnvex 7113 |
. . . . . . 7
|
| 32 | 31 | imaex 7104 |
. . . . . 6
|
| 33 | 26, 27, 32 | fvmpt 6282 |
. . . . 5
|
| 34 | 2, 33 | syl5eq 2668 |
. . . 4
|
| 35 | 34 | eleq2d 2687 |
. . 3
|
| 36 | inss1 3833 |
. . . . . 6
| |
| 37 | 7 | reldvdsr 18644 |
. . . . . 6
|
| 38 | relss 5206 |
. . . . . 6
| |
| 39 | 36, 37, 38 | mp2 9 |
. . . . 5
|
| 40 | eliniseg2 5505 |
. . . . 5
| |
| 41 | 39, 40 | ax-mp 5 |
. . . 4
|
| 42 | brin 4704 |
. . . 4
| |
| 43 | 41, 42 | bitri 264 |
. . 3
|
| 44 | 35, 43 | syl6bb 276 |
. 2
|
| 45 | 4, 11, 44 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-dvdsr 18641 df-unit 18642 |
| This theorem is referenced by: 1unit 18658 unitcl 18659 opprunit 18661 crngunit 18662 unitmulcl 18664 unitgrp 18667 unitnegcl 18681 unitpropd 18697 isdrng2 18757 subrguss 18795 subrgunit 18798 fidomndrng 19307 invrvald 20482 elrhmunit 29820 |
| Copyright terms: Public domain | W3C validator |