MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   Unicode version

Theorem isunit 18657
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1  |-  U  =  (Unit `  R )
unit.2  |-  .1.  =  ( 1r `  R )
unit.3  |-  .||  =  (
||r `  R )
unit.4  |-  S  =  (oppr
`  R )
unit.5  |-  E  =  ( ||r `
 S )
Assertion
Ref Expression
isunit  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) )

Proof of Theorem isunit
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . 4  |-  ( X  e.  (Unit `  R
)  ->  R  e.  dom Unit )
2 unit.1 . . . 4  |-  U  =  (Unit `  R )
31, 2eleq2s 2719 . . 3  |-  ( X  e.  U  ->  R  e.  dom Unit )
43elexd 3214 . 2  |-  ( X  e.  U  ->  R  e.  _V )
5 df-br 4654 . . . 4  |-  ( X 
.||  .1.  <->  <. X ,  .1.  >.  e.  .||  )
6 elfvdm 6220 . . . . . 6  |-  ( <. X ,  .1.  >.  e.  (
||r `  R )  ->  R  e.  dom  ||r )
7 unit.3 . . . . . 6  |-  .||  =  (
||r `  R )
86, 7eleq2s 2719 . . . . 5  |-  ( <. X ,  .1.  >.  e.  .||  ->  R  e.  dom  ||r )
98elexd 3214 . . . 4  |-  ( <. X ,  .1.  >.  e.  .||  ->  R  e.  _V )
105, 9sylbi 207 . . 3  |-  ( X 
.||  .1.  ->  R  e. 
_V )
1110adantr 481 . 2  |-  ( ( X  .||  .1.  /\  X E  .1.  )  ->  R  e.  _V )
12 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( ||r `  r )  =  (
||r `  R ) )
1312, 7syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( ||r `  r )  =  .||  )
14 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
15 unit.4 . . . . . . . . . . . 12  |-  S  =  (oppr
`  R )
1614, 15syl6eqr 2674 . . . . . . . . . . 11  |-  ( r  =  R  ->  (oppr `  r
)  =  S )
1716fveq2d 6195 . . . . . . . . . 10  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  ( ||r `
 S ) )
18 unit.5 . . . . . . . . . 10  |-  E  =  ( ||r `
 S )
1917, 18syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( ||r `  (oppr
`  r ) )  =  E )
2013, 19ineq12d 3815 . . . . . . . 8  |-  ( r  =  R  ->  (
( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  (  .||  i^i  E ) )
2120cnveqd 5298 . . . . . . 7  |-  ( r  =  R  ->  `' ( ( ||r `
 r )  i^i  ( ||r `
 (oppr
`  r ) ) )  =  `' ( 
.||  i^i  E )
)
22 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
23 unit.2 . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
2422, 23syl6eqr 2674 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
2524sneqd 4189 . . . . . . 7  |-  ( r  =  R  ->  { ( 1r `  r ) }  =  {  .1.  } )
2621, 25imaeq12d 5467 . . . . . 6  |-  ( r  =  R  ->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } )  =  ( `' ( 
.||  i^i  E ) " {  .1.  } ) )
27 df-unit 18642 . . . . . 6  |- Unit  =  ( r  e.  _V  |->  ( `' ( ( ||r `  r
)  i^i  ( ||r `  (oppr `  r
) ) ) " { ( 1r `  r ) } ) )
28 fvex 6201 . . . . . . . . . 10  |-  ( ||r `  R
)  e.  _V
297, 28eqeltri 2697 . . . . . . . . 9  |-  .||  e.  _V
3029inex1 4799 . . . . . . . 8  |-  (  .||  i^i  E )  e.  _V
3130cnvex 7113 . . . . . . 7  |-  `' ( 
.||  i^i  E )  e.  _V
3231imaex 7104 . . . . . 6  |-  ( `' (  .||  i^i  E )
" {  .1.  }
)  e.  _V
3326, 27, 32fvmpt 6282 . . . . 5  |-  ( R  e.  _V  ->  (Unit `  R )  =  ( `' (  .||  i^i  E
) " {  .1.  } ) )
342, 33syl5eq 2668 . . . 4  |-  ( R  e.  _V  ->  U  =  ( `' ( 
.||  i^i  E ) " {  .1.  } ) )
3534eleq2d 2687 . . 3  |-  ( R  e.  _V  ->  ( X  e.  U  <->  X  e.  ( `' (  .||  i^i  E
) " {  .1.  } ) ) )
36 inss1 3833 . . . . . 6  |-  (  .||  i^i  E )  C_  .||
377reldvdsr 18644 . . . . . 6  |-  Rel  .||
38 relss 5206 . . . . . 6  |-  ( ( 
.||  i^i  E )  C_  .||  ->  ( Rel  .||  ->  Rel  (  .||  i^i  E ) ) )
3936, 37, 38mp2 9 . . . . 5  |-  Rel  (  .|| 
i^i  E )
40 eliniseg2 5505 . . . . 5  |-  ( Rel  (  .||  i^i  E )  ->  ( X  e.  ( `' (  .||  i^i  E ) " {  .1.  } )  <->  X (  .|| 
i^i  E )  .1.  ) )
4139, 40ax-mp 5 . . . 4  |-  ( X  e.  ( `' ( 
.||  i^i  E ) " {  .1.  } )  <-> 
X (  .||  i^i  E
)  .1.  )
42 brin 4704 . . . 4  |-  ( X (  .||  i^i  E )  .1.  <->  ( X  .||  .1.  /\  X E  .1.  ) )
4341, 42bitri 264 . . 3  |-  ( X  e.  ( `' ( 
.||  i^i  E ) " {  .1.  } )  <-> 
( X  .||  .1.  /\  X E  .1.  )
)
4435, 43syl6bb 276 . 2  |-  ( R  e.  _V  ->  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) ) )
454, 11, 44pm5.21nii 368 1  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X E  .1.  ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   "cima 5117   Rel wrel 5119   ` cfv 5888   1rcur 18501  opprcoppr 18622   ||rcdsr 18638  Unitcui 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-dvdsr 18641  df-unit 18642
This theorem is referenced by:  1unit  18658  unitcl  18659  opprunit  18661  crngunit  18662  unitmulcl  18664  unitgrp  18667  unitnegcl  18681  unitpropd  18697  isdrng2  18757  subrguss  18795  subrgunit  18798  fidomndrng  19307  invrvald  20482  elrhmunit  29820
  Copyright terms: Public domain W3C validator