MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem1 Structured version   Visualization version   GIF version

Theorem ivthlem1 23220
Description: Lemma for ivth 23223. The set 𝑆 of all 𝑥 values with (𝐹𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
Assertion
Ref Expression
ivthlem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐷,𝑧   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝐴   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem ivthlem1
StepHypRef Expression
1 ivth.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 10089 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 ivth.2 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10089 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 ivth.4 . . . . 5 (𝜑𝐴 < 𝐵)
61, 3, 5ltled 10185 . . . 4 (𝜑𝐴𝐵)
7 lbicc2 12288 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
82, 4, 6, 7syl3anc 1326 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
9 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
109ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
11 fveq2 6191 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1211eleq1d 2686 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
1312rspcv 3305 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝐴) ∈ ℝ))
148, 10, 13sylc 65 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
15 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
16 ivth.9 . . . . 5 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716simpld 475 . . . 4 (𝜑 → (𝐹𝐴) < 𝑈)
1814, 15, 17ltled 10185 . . 3 (𝜑 → (𝐹𝐴) ≤ 𝑈)
1911breq1d 4663 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝐴) ≤ 𝑈))
20 ivth.10 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
2119, 20elrab2 3366 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ (𝐹𝐴) ≤ 𝑈))
228, 18, 21sylanbrc 698 . 2 (𝜑𝐴𝑆)
23 ssrab2 3687 . . . . . 6 {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈} ⊆ (𝐴[,]𝐵)
2420, 23eqsstri 3635 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
2524sseli 3599 . . . 4 (𝑧𝑆𝑧 ∈ (𝐴[,]𝐵))
26 iccleub 12229 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
27263expia 1267 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
282, 4, 27syl2anc 693 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → 𝑧𝐵))
2925, 28syl5 34 . . 3 (𝜑 → (𝑧𝑆𝑧𝐵))
3029ralrimiv 2965 . 2 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
3122, 30jca 554 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  *cxr 10073   < clt 10074  cle 10075  [,]cicc 12178  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  ivthlem2  23221  ivthlem3  23222
  Copyright terms: Public domain W3C validator