MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem1 Structured version   Visualization version   Unicode version

Theorem ivthlem1 23220
Description: Lemma for ivth 23223. The set  S of all 
x values with  ( F `  x ) less than  U is lower bounded by  A and upper bounded by  B. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivth.10  |-  S  =  { x  e.  ( A [,] B )  |  ( F `  x )  <_  U }
Assertion
Ref Expression
ivthlem1  |-  ( ph  ->  ( A  e.  S  /\  A. z  e.  S  z  <_  B ) )
Distinct variable groups:    x, z, B    x, D, z    x, F, z    ph, x, z   
x, A    x, S, z    x, U, z
Allowed substitution hint:    A( z)

Proof of Theorem ivthlem1
StepHypRef Expression
1 ivth.1 . . . . 5  |-  ( ph  ->  A  e.  RR )
21rexrd 10089 . . . 4  |-  ( ph  ->  A  e.  RR* )
3 ivth.2 . . . . 5  |-  ( ph  ->  B  e.  RR )
43rexrd 10089 . . . 4  |-  ( ph  ->  B  e.  RR* )
5 ivth.4 . . . . 5  |-  ( ph  ->  A  <  B )
61, 3, 5ltled 10185 . . . 4  |-  ( ph  ->  A  <_  B )
7 lbicc2 12288 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
82, 4, 6, 7syl3anc 1326 . . 3  |-  ( ph  ->  A  e.  ( A [,] B ) )
9 ivth.8 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
109ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
11 fveq2 6191 . . . . . . 7  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
1211eleq1d 2686 . . . . . 6  |-  ( x  =  A  ->  (
( F `  x
)  e.  RR  <->  ( F `  A )  e.  RR ) )
1312rspcv 3305 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  A )  e.  RR ) )
148, 10, 13sylc 65 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  RR )
15 ivth.3 . . . 4  |-  ( ph  ->  U  e.  RR )
16 ivth.9 . . . . 5  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716simpld 475 . . . 4  |-  ( ph  ->  ( F `  A
)  <  U )
1814, 15, 17ltled 10185 . . 3  |-  ( ph  ->  ( F `  A
)  <_  U )
1911breq1d 4663 . . . 4  |-  ( x  =  A  ->  (
( F `  x
)  <_  U  <->  ( F `  A )  <_  U
) )
20 ivth.10 . . . 4  |-  S  =  { x  e.  ( A [,] B )  |  ( F `  x )  <_  U }
2119, 20elrab2 3366 . . 3  |-  ( A  e.  S  <->  ( A  e.  ( A [,] B
)  /\  ( F `  A )  <_  U
) )
228, 18, 21sylanbrc 698 . 2  |-  ( ph  ->  A  e.  S )
23 ssrab2 3687 . . . . . 6  |-  { x  e.  ( A [,] B
)  |  ( F `
 x )  <_  U }  C_  ( A [,] B )
2420, 23eqsstri 3635 . . . . 5  |-  S  C_  ( A [,] B )
2524sseli 3599 . . . 4  |-  ( z  e.  S  ->  z  e.  ( A [,] B
) )
26 iccleub 12229 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  z  e.  ( A [,] B
) )  ->  z  <_  B )
27263expia 1267 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
z  e.  ( A [,] B )  -> 
z  <_  B )
)
282, 4, 27syl2anc 693 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B )  ->  z  <_  B
) )
2925, 28syl5 34 . . 3  |-  ( ph  ->  ( z  e.  S  ->  z  <_  B )
)
3029ralrimiv 2965 . 2  |-  ( ph  ->  A. z  e.  S  z  <_  B )
3122, 30jca 554 1  |-  ( ph  ->  ( A  e.  S  /\  A. z  e.  S  z  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  ivthlem2  23221  ivthlem3  23222
  Copyright terms: Public domain W3C validator